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1 Introduction

Cosmological computational science is a rapidly evolving field in astronomy.
Thanks to growing computational power almost every aspect of astronomy
can be modeled using numerical simulations. This is true for all the differ-
ent scale lengths, be it planetary formation, galaxy evolution or the evolution of
the universe. Large success stories can be told in N-body simulations, hydro-
dynamics and magneto-hydrodynamics. Using grid or tree-codes it is possible
to simulate up to N = 21603 particles, which is the current record holder in a
gravity only simulation (the Millennium simulation by Springel et al. (2005)). In
the hydrodynamic and MHD regime, one of the most impressive simulations
is the one by de Avillez and Breitschwerdt (2005) of the interstellar medium
using adaptive mesh refinement AMR techniques. They are able to resolve up
to 1.25 pc in a 1 kpc2 × 10 kpc box.

In one discipline, this picture is not completely true. One physical quantity is
still very hard to solve for and only in recent times did algorithms for solving this
quantity emerge. This is the radiative transfer equation. A wealth of experience
has been gained in stellar astrophysics on how to solve this equation, and very
impressive results can be obtained with these methods. Unfortunately, these
methods are only applicable for very special cases: stars.

The complexity of the transfer equation is reduced by special assumptions
or exploitations of symmetries. This strategy cannot be used in more general
cases, like radiative transfer in cosmological simulations. Symmetries do not
exist and to make things worse, the optical depths are too low, that any locality
can be assumed. Localities make things a whole lot easier.

In this work we want to pick up an existing algorithm for general radiative
transfer calculations and apply this to a cosmological setting. We want to ver-
ify a simplistic model of the Lyman-α forest, and check it with a more accurate
description by incorporating effects neglected in these analytical prescriptions.
Dense filaments absorb the UV background and can reduce the radiation field
around them. Then recombining electrons produce a diffuse radiation compo-
nent, which might also influence results. These effects are observable in the
synthetic spectras we construct and can be analysed statistically.

We show, that these effects do not influence the Ly-α forest greatly, but still to
a noticeable extend. Shadowing around dense filaments increases the optical
depths near them and hints are seen, that this affects statistical properties of
the forest. A diffuse component only plays a minor role in the Ly-α forest, but
still it is noticeable. It is possible that we still underestimate the effect, due to
the difficulties in simulating recombination radiation.

In order to solve the question of photoevaporation of dwarf galaxies, any
numerical code has to perform well in solving the transfer equation. This is
also important in the question of which objects are responsible for the UV
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1 Introduction

background at low redshift.
We can demonstrate, that our code is capable of being used in cosmological

setups at low redshift, at least in the context of the Ly-α forest. Up to now,
radiative transfer codes have only been applied to the high redshift regime.
No one tried to check, if the transfer solvers do a good job in the low density
regimes at low redshift.

Radiative transfer is a very exciting new field in astronomy. Due to the fact,
that almost all the data collected by observers stem from photons, it is even
more interesting to see how photons propagate in the universe.

The structure of this thesis will be as such. First we want to motivate the
reader for our work and give a short introduction to the Lyman-α forest and the
diverse field of cosmological radiative transfer. Different methods for solving
radiative transfer are introduced to put the method used in this thesis into the
broader context.

We then want to discuss the model of Hui and Gnedin for the Lyman-α forest
in detail. This is the model we want to check and refine using radiative transfer.
For this, we study the model in great detail. We address possible objections
and develop models to use with our dark matter only cosmological simulations.
Of course these models need to mimic observational findings.

In the next chapter we then want to develop the numerical scheme for sim-
ulating radiation in a cosmological context. We then test our version of the
scheme extensively to make sure that it is working and we study limitations
of the scheme. Then we can apply our code to the Lyman-α forest and ob-
tain results from our detailed model. These results are then analysed and we
will focus on differences between the Hui and Gnedin model and ours. These
results are then discussed and we draw our conclusions.

1.1 Motivation

When pointing a preferably big telescope to a high redshift quasar, and at-
taching a preferably high resolution spectrograph to it, one will get a spectrum
similar to the one in Figure 1.1.1. If the redshift is high enough, the ultra-violet
(UV) Ly-α emission line (1215.67 Å) of the QSO (Quasi Stellar Object / quasar)
will be redshifted sufficiently to be visible, as is the case in the spectrum pre-
sented here. The emission line is located at the right side of the plot, around
5600 Å.

Blueward of this emission line one can see a wealth of different absorption
lines, called the Lyman-α forest. In 1971 Lynd was puzzled by unidentifiable
absorption lines blueward of the Ly-α emission line. He proposed, that these
lines in his spectrum of 4C 05.34 could be Ly-α lines lying at lower redshift
than the observed QSO. He stems this argument from the fact, that all these
absorption lines lie blueward of the Ly-α emission line (Lynds (1971)).

That these lines are really Ly-α absorption lines has been proved by looking
for correlated Ly-β lines (Oemler and Lynds (1975)). Then the question arose,
whether these Ly-α absorption lines are produced by intervening clouds at dif-
ferent redshifts, or whether these clouds are ejectas of the QSO itself. Sargent
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1 Introduction

Figure 1.1.1: High resolution spectrum of the zem = 3.62 QSO1422+23
(V = 16.5), taken with the Keck High Resolution Spectrograph
(HIRES). Plot taken from Rauch (1998). The horizontal axis gives
wavelength in Å, while the vertical axis gives photon flux in arbi-
trary units.

et al. (1980) analysed six QSO spectra and came to the conclusion, that if
these clouds were ejected by the QSO, they would need to have enormous ve-
locities of up to 20% of the speed of light. Also, the distribution of the number
density was similar in all their QSOs. A fact that cannot be easily explained
with ejected media.

They conclude, that these lines are produced by different hydrogen Ly-α
absorbers at different redshifts. By analysing the lines in more detail it can be
seen, that not all lines are produced by hydrogen only, but some are caused
by metals like Si, O, C, N and others (see Schaye et al. (2007), Rauch et al.
(2001), Cowie et al. (1995) and many more). This complicates any analysis of
observational data. On top of this forest of absorption lines one can see the
varying continuum spectrum of the QSO.

Each absorption line has a specific profile, called the Voigt profile. By fit-
ting such profiles to the absorption lines, one can measure column densities
and the temperature of these systems. Ly-α forest lines have column den-
sities below N(HI) < 1017 cm−2 (Rauch (1998)). With higher column den-
sities the gas becomes optically thick to UV photons. At densities between
1017 < N(HI) < 1019 cm−2 the wings of the absorption line start to produce a
dip in the continuum. In these systems, hydrogen is still neutral enough, so that
radiation emitted by the quasar below λ < 912Å is totaly absorbed in the Lyman
limit. This results in a totaly saturated line. Such systems are called Lyman
Limit Systems LLS (Rauch (1998)). At densities above N(HI) > 1019 cm−2 a
deep trough is visible in the Ly-α forest. These features are called Damped Ly-
man Alpha systems DLA. All these different systems can be seen in a beautiful
plot by Charlton et al. (2000) reproduced here in Figure 1.1.2.

Different statistical properties can be derived to characterise the Ly-α forest.
In the course of this work we will look closer at some of the statistical prop-
erties, like transmission or temperature statistics. For a good overview of all
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Figure 1.1.2: Spectrum of the zem = 1.34 PKS0454+039 quasar showing all
possible absorption features in the Ly-α forest. Plot taken from
Charlton et al. (2000)

the properties of the Ly-α forest see the review by Rauch (1998). One of the
interesting statistical measures is the line number density dn/dz. It describes
the evolution of the forest in time and is given by a power law

dn

dz
=
(
dn

dz

)
0

(1 + z)γ (1.1.1)

where (dn/dz)0 = 9.06 ± 0.40 for z > 1.5 and γ = 2.19 ± 0.27 for NHI =
1013.64−16 cm−2 as is derived by Kim et al. (2001).

This is only true if measurements are taken well outside the influence of the
QSO. Something interesting happens near the Ly-α emission line of the QSO.
Slightly blueward to the emission line, the line number density decreases if
one approaches the emission line. This lack of absorption near the QSO is
called the proximity effect (Bajtlik et al. (1988)). In the surroundings of the
QSO the UV background flux is enhanced by the quasar’s own flux. Therefore
any absorbing cloud in the vicinity of the QSO is more ionised, which results in
a reduction of Ly-α line number density near the QSO.

Simple analytical models exist with which observers are able to derive nu-
merous properties, like the UV background flux. The proximity effect is also
a very good test case for any radiative transfer code. It could be, that inho-
mogeneities caused by shadowing could influence the effect. Whether this
influences the way observers analyse the proximity effect needs to be studied.
With the work presented here, this would be possible. One study going into
this direction has be done by Maselli et al. (2004). Their findings are interest-
ing, since they could not find any big influence of a source on its surroundings,
except if they assumed extremely high star formation rates in the galaxy they
studied.

The first theoretical modeling of Ly-α lines was done by Spitzer in 1956. He
concluded, that galaxies have large gaseous halos giving rise to the absorption
lines seen in the forest. The idea that these Ly-α absorption lines stem from
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1 Introduction

pressure confined clouds between the observer and source was discussed
heavily in the literature until 1997 when Hui and Gnedin ended the discussion.

The two proposed a model based on outputs of cosmological dark matter
simulations. By mapping dark matter densities to gas densities and applying a
simple ionisation model, they were able to synthesize Ly-α spectra by picking
random lines of sights through their box. A statistical analysis of their spectra
revealed all the observed statistical properties, with which the discussion about
the origin of the forest ended. The Ly-α is thus a direct consequence of the
filamentary structure of the universe.

Figure 1.1.3: The power spectrum as measured by Tegmark et al. (2004). The
Ly-α forest is capable of probing small scales of the universe.
Measurements of the Ly-α forest constrain the power spectrum
at higher wavenumber k.

The Ly-α forest is thus a very interesting tool to probe the structure of the
universe. It is like a fingerprint off all the structure on the spectra of a quasar.
It is therefore not surprising, that the Ly-α forest can be used to determine the
small scale part of the density power spectrum. Using the Ly-α forest, the cos-
mological models can be better constraint. The forest determines the shape of
the higher wavenumber part of the power spectrum. This is best seen in a plot
by Tegmark et al. (2004) reproduced in Figure 1.1.3. A good understanding
of the physics in the Ly-α forest is thus very important for understanding our
universe better. It will help observers obtain better data for constraining the
evolution of our universe.
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1 Introduction

1.2 Cosmological Radiative Transfer

Solving radiative transfer in unspecified geometry is not an easy task. In prin-
ciple one needs to solve the seven dimensional transfer equation. Since this
is an impossible task, at least with today’s and near future computers, some
other strategies need to be thought of.

Solving the transfer equation for the very special case of Local Thermal Equi-
librium LTE is relatively easy and straight forward. Radiation effects only influ-
ence its surroundings locally, making things a lot easier. This approximation is
applicable in a dense medium or to put it in a numerical formulation, when the
mean free path of a photon is smaller than the cell size. If this is not the case,
radiation from a totally different place reaches the cell and affects quantities
there. One cannot speak of LTE anymore (Choudhuri (1998)) and things start
to get complicated.

Some strategies exist to calculate radiative transfer and we want to present
them briefly. This shall not be an excessive discussion of all the available
codes, for this we want to guide the reader to the cosmological radiative trans-
fer code comparison project by Iliev et al. (2006). Since no analytical way of
solving the transfer equation exists, one needs to compare each code with the
others to see, if several methods reveal comparable solutions or not. But even
then it is not granted that a particular scheme is correct. How difficult all this
is, can be seen in the fact that all the different codes do not necessary agree
with each other.

The code comparison project takes 11 codes of participating groups and
solves the same problems with each code. The output is then compared with
all the other codes. By doing this it is possible to see how well each scheme
performs and maybe why problems exists.

The simplest test case for a radiative transfer code is an isothermal Ström-
gren sphere. Results of the codes for its size vary by about 5% to the analytical
solution. The difference starts to grow if photoheating is turned on in the cal-
culation. In this case, the variation grow to 10%.

The point where no code really agrees is in the thickness and structure of
the ionisation front itself. Some codes produce thicker fronts, since the medium
outwards of the sphere gets preheated by different processes. And there the
disagreement starts. Some codes implement recombination radiation, which
allow preheating of the medium in front of the HII region through a diffuse
radiating front. Others are able to calculate the transfer equation at different
wavelengths, allowing higher energy photons to penetrate the ionisation front
well into the medium lying ahead of it. Other only solve a monochromatic
case. How greatly these solutions (especially in the temperature domain) vary
is shown in a reproduction of Figure 14 of the comparison project’s first paper,
given here in Figure 1.2.1.

One observation that can be made is that at least all the ray tracing codes
(C2-Ray, CRASH, ART, RSPH, IFT) agree more or less. The problem lies more
in matching results of other methods and to understand the differences.

Now is the time to discuss different codes and quickly introduce the reader
to each method. With this it will be understandable, where or at least why all
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1 Introduction

these differences arise. This will also put the method used in this work in a
broader picture.

Ray-Tracing The most widely used method for solving the radiative transfer
equation is ray-tracing. In this method, the transport equation is solved using
grids. Many different codes use the principles of this method, but implemen-
tation and the strategy on how the physics is solved varies from code to code.
Ray-tracing is in fact widely used in a somewhat modified way by the computer
graphics industry.

Some of the codes using ray-tracing are C2-Ray (Mellema et al. (2006)),
ART (Nakamoto et al. (2001)), FTTE (Razoumov and Cardall (2005)), the
hybrid characteristics FLASH-HC code (Rijkhorst et al. (2006)), the radiation
hydrodynamics code ZEUS-MP (Whalen and Norman (2006)), and a Monte-
Carlo version called CRASH (Maselli et al. (2003)).

The common denominator of all these codes is, that they cast rays through
the computational domain and solve the radiative transfer equation along these
lines. This can be done in two different ways. The first method is to cast a ray
from the source to each cell in the domain. This is called the long character-

Figure 1.2.1: Test 2 (H II region expansion in an uniform gas with varying tem-
perature) of the Comparison Project Iliev et al. (2006): Images
of the temperature, cut through center of the simulation volume
at time t = 100 Myr for C2-Ray, OTVET, CRASH, RSPH, ART,
FTTE, and IFT.
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ba

Figure 1.2.2: Comparison of the long (a) and short characteristics (b) method.
Taken from Rijkhorst et al. (2006)

istics method and is computationally very expensive, since cells nearer to the
source are processed multiple times.

A method addressing this redundancy is the short characteristics method.
Here contributions of each cell are calculated independently and then using an
interpolation scheme, rays to every cell in the grid are constructed using these
preprocessed values.

Rijkhorst et al. (2006) gave a nice graphical representation of the two meth-
ods in their Figure 1, which is reproduced here in Figure 1.2.2.

Most of the codes mentioned before have one drawback. They assume Lo-
cal Thermal Equilibrium (LTE), which means, that all radiative processes are
seen as local processes. This gives rise to the “on-the-spot” approximation,
with which a diffuse component by recombination radiation can be left out.
The reasoning is as such: every photon stemming from a recombination event
will find another neutral atom in the cell and ionise this atom. Thus, no recom-
bination radiation exits the cell and is thus not needed in the solver.

There are some limitations to this approach. In a cosmological context, one
deals with densities where the mean free path of a photon is magnitudes big-
ger than the size of the cells in the grid. The problem becomes thus non
local. That this can have an influence on the final solution is demonstrated
in Ritzerveld (2007). In his Figure 12.11, Ritzerveld demonstrated, that the
diffuse component affects the regions of the ionisation fronts.

Some codes can include such a diffuse component using ray-tracing meth-
ods. In principle every cell can now be a source and ray-tracing needs to be
carried out from each cell, to all the other cells. This is computationally ex-
tremely expensive.

A code including an intelligent version of such a strategy is for example ART
which uses Λ-iteration for the diffuse part and the FTTE code. Another code
capable of including recombination radiation is CRASH, the scheme used in
this work.

CRASH is a Monte-Carlo ray-tracer, which means, that each source sends
out rays of photons in a random direction. With this, the time steps in the
simulation get very small but the number of rays to be processed is reduced.
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Photons are propagated along these rays and energy is deposited in each cell.
A big drawback of this method is its low angular resolution.

Some codes like ZEUS-MP or FLASH-HC are coupled to hydrodynamics.
This is not that much of a technical challenge when using ray-tracing. Since a
hydro time step is larger than the time scales of the radiation or the chemical
solver, radiation and chemical evolution can be solved decoupled from the
hydrodynamic solver. This is only possible, if a hydro time step is always bigger
than the time scales of the other processes (Whalen and Norman (2006)).

OTVET - Optically Thin Variable Eddington Tensor (Gnedin and Abel (2001))
The Optically Thin Variable Eddington Tensor (OTVET) approximation was de-
veloped by Gnedin and Abel in 2001. Using the moments of the radiative
transfer equation and the approximation of optical thinness they can formulate
the Eddington tensor and solve for it. The Eddington tensor describes photons
as if they form a sort of gas. The OTVET code has been coupled to hydrody-
namical simulations.

This formulation has one big advantage that it scales linear with the number
of sources. Due to this, Gnedin and Abel were the first to study the problem
of reionisation (Gnedin (2000)). For many codes, this is still a big task and not
easy to do.

One must note, that OTVET fails in optically thick parts. This is the case
when two ionisation fronts that are about to overlap are present. In this case,
the two fronts seem to attract each other and start to deviate from spherical
symmetry (Iliev et al. (2006)). This is an unphysical effect and leads to devia-
tions of about 17% from spherical symmetry.

SimpleX SimpleX (Ritzerveld (2007)) is a very interesting code. It makes no
use of a structured grid, but uses an unstructured one instead. The grid is
constructed in such a way, that grid points are separated by one mean free
path. The points are then connected using the Delaunay tessellation tech-
nique. Thus, the grid is a direct function of matter density.

The radiative transfer equation is then solved by walking along the Delaunay
lines. The fact that all points are spaced according to the mean free path
makes the integration of the transfer equation especially easy. The code does
not scale with the number of sources, which makes it an ideal candidate for
diffuse radiation.

Unfortunately the code has its drawbacks. Since the grid is a function of
the mean free path, it varies from wavelength to wavelength. To solve the poly-
chromatic transfer case, a new grid has to be constructed for each wavelength,
which probably poses a problem to efficiency.

Another problem of the code lies in the nature of the grid. Since photons only
travel along the Delaunay lines that connect the grid points, and the grid is a
function of matter density, photons tend to travel in the direction of the highest
density. This is seen in Ritzerveld (2007) in his Figure 9.7 where SimpleX is
compared to other codes of the comparison project. In the cosmological field
test, all the codes have the filaments more neutral than SimpleX. It seems that
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1 Introduction

filaments do not shield radiation, instead they facilitate photon transportation.
This is unphysical and a very big drawback of the scheme.

We want to end our short introduction to these different methods here. Un-
fortunately it would exceed the capacities of this work to explain the codes in
more detail. The code used in this work will be discussed completely.

For all simulations and calculations used in this work, we adopted a WMAP 3
cosmological model with ΩΛ = 0.7, Ωbaryon = 0.04, ΩDM = 0.26, and a Hubble
constant of h = 0.7.

14



2 The Gnedin Model of the Ly-α
Forest

In 1997 Hui and Gnedin produced the now widely accepted model of the Ly-α
forest (Hui et al. (1997)). They showed, that the Ly-α forest is a direct product
of cosmological structure formation. The hydrogen absorption lines trace cos-
mological structures such as filaments and voids. The statistical properties of
this model match strikingly well with the observed properties of the forest (see
below).

For the model to work, Hui and Gnedin derived a way to directly map dark
matter densities to gas (i.e. hydrogen) densities (Hui and Gnedin (1997)). Ap-
plying a semi-analytical model to cosmological hydro-simulations they derived
their so called “Equation of State” (it is in fact not a real EOS) which enables
the use of dark matter only simulations. This makes things easy, but of course
does not capture the complex processes involved in turbulent and shocked
gas. Since these processes only play a bigger role in higher density environ-
ments, the effect on the Ly-α forest is small, for these systems show up in
saturated lines only.

2.1 The Model

Ly-α (10.196 eV or 1216 Å) or higher energetic photons are continuously red-
shifted as they travel through space and time. On their journey through space,
they might end up meeting a hydrogen atom that absorbs the photon. It will
excite the electron from the ground state to a higher state. This mechanism
absorbs photons and reduces the light that reaches an observer on earth.

We can now quantify the amount of photon absorption by defining the optical
depth as an integral over the line of sight where x is the comoving coordinate
on the line of sight

τ (νobs) =
∫ xB

xA

nHI(x)σα(νrest)
dx

1 + z
(2.1.1)

The probability that a photon gets absorbed is then e−τ which is also called
the transmission probability. In Equation (2.1.1) xA defines the location of
the source on a line of sight. xB accordingly describes the point of absorp-
tion/observation. nHI gives the proper number density of neutral hydrogen at
point x. σα is the cross section of the Ly-α absorption, which is a function of
wavelength in the restframe of the absorbing atom at position x. z denotes the
cosmological redshift.
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2 The Gnedin Model of the Ly-α Forest

The restframe wavelength in the system of the intervening atom is a combi-
nation of two effects. The main effect that has to be taken account for is cosmo-
logical redshifting of the photon. This can be expressed through νobs (1 + z).
A secondary effect that needs to be addressed is the fact, that the hydrogen
atom will not be static in the general case. It will travel at some peculiar velocity
vpec in the direction of the line of sight. This motion will again red- or blueshift
(Doppler-shift) the photon for the atom in question, an effect that can be de-
scribed through νobs (1 + z) (vpec/c), where c is the speed of light. It needs to
be noted, that vpecc � 1. The transformation to restframe wavelength is thus

νrest = νobs (1 + z)
(

1 +
vpec
c

)
(2.1.2)

Since we will be using dark matter only simulation outputs given at a specific
redshift, it is convenient to expand Equation (2.1.2) around a central redshift
z. Bared variables will denote quantities at redshift z. First we need to define
redshift z as

z =
v

c
= x

ȧ

a

1
c

= xH
1
c

(2.1.3)

where x has the same meaning as above and a is the expansion factor. H is
the Hubble constant which is defined as H = ȧ/a. With this we can expand
Equation (2.1.2) around z and get

νrest = νobs (1 + z)
(

1 +
vpec
c

)
+ νobs (z − z)

(
1 +

vpec
c

)
= νobs (1 + z) + νobs (1 + z)

vpec
c

+
1 + z

1 + z
νobs

(
1 +

vpec
c

)
(x− x)

H

c

= νobs (1 + z)
(

1 +
vpec
c

+
H

(1 + z)
1
c

(x− x) +
H

(1 + z)
vpec
c2

(x− x)
)

(2.1.4)

The term with c2 can be omitted, since its contribution is too small. With this
we get

νrest = νobs (1 + z)
(

1 +
u

c

)
(2.1.5)

with u being

u ≡ H

1 + z
(x− x) + vpec (x) (2.1.6)

We will define one more velocity coordinate needed for mapping the flux to a
point in the spectrum. The observed wavelength in the spectrum νobs is the
wavelength of the Ly-α transition να transformed into the restframe of z and
from that point on redshifted by uobs. This transforms the problem into velocity
coordinates with zero point z.

νobs =
να

1 + z

(
1− uobs

c

)
(2.1.7)

We can now transform the coordinates of 2.1.1 into our new definitions. By
noting that dx = dx

dudu Equation (2.1.1) transforms into

τ (uobs) =
∫ uB

uA

nHI
1 + z

∣∣∣∣dudx
∣∣∣∣−1

σαdu (2.1.8)
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2 The Gnedin Model of the Ly-α Forest

For σα we need to take into account, that the cross section also depends on
a thermal component (thermal broadening). This thermal broadening is ex-
pected to be Gaussian distributed and can be expressed as

σα = σα,0
c

b
√
π
e−(u−uobs)2/b2 (2.1.9)

where σα,0 is the cross section of the Ly-α transition σα,0 = 4.5 × 10−18cm2. b
is the thermal broadening parameter

b =

√
2
kBT

mp
(2.1.10)

where kB is the Boltzmann constant, mp is the mass of the proton and T the
temperature of the gas. The form of Equation (2.1.9) only accounts for thermal
broadening and does not include natural broadening of the line. To fully de-
scribe the broadening mechanisms, one needs the Voigt-profile function. The
Voigt-profile is a convolution of the Gaussian thermal profile and the Lorentzian
natural line profile. But in the regime of low column densities, the Lorentzian
profile has little effect on the line, therefore it can be omitted. This is true for
column densities less than about 1017 cm−2 (see Hui et al. (1997) for further
references).

Equation (2.1.10) can be extended by an expression describing turbulent
motion smaller than the cell-size of the simulation. This turbulent motion we
call in analogy to the same practise in stellar atmospheres “microturbulence”
and a discussion is given in Chapter 2.7.

2.1.1 Proper Number Density

We now have the basic ingredients to create our synthetic Ly-α spectrum. The
only problem still remaining is, how do we determine the proper number density
of hydrogen and where do we get its temperature from, if we are only using
dark matter simulation? We will first address the problem of number densities.

First we will define two quantities, that make life easier. The first one is
the proper number density in terms of overdensity. The second one is the
overdensity as such. The idea of overdensities is, that one only looks at the
deviation of a cosmic mean value. The number density thus becomes

nH (x) = nH (1 + δbaryon (x)) (2.1.11)

where nH is the cosmic mean number density at redshift z and δbaryon is the
overdensity of baryonic matter. This assumes, that all baryonic matter is hy-
drogen which might seem crude. The amount of hydrogen in the universe is
very high, especially in the low density regime discussed here. About 90% of
the total number density is attributed to hydrogen, the rest being mostly helium
and a small fraction of metals. Therefore this is a reasonable and well working
approximation for the Ly-α forest. The overdensity is thus defined as

δbaryon (x) =
ρbaryon − ρbaryon

ρbaryon
(2.1.12)
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2 The Gnedin Model of the Ly-α Forest

To calculate the number density, the rate equation needs to be solved.

dnHI
dt

= −nHIΓHI + nHIIne−RHII/e−(T ) (2.1.13)

Here ΓHI is the HI-photoionisation rate and RHII/e− is the HII-recombination
rate. Approximate values of these atomic quantities are ΓHI ≈ 4×10−12JHIs−1

andRHII/e− ≈ 4.29×10−13
[
T/(104K)

]−0.7 cm3s−1 (see Hui and Gnedin (1997)
for further details). JHI is 70% of the flux of the ionising background radiation
JHI = 0.7J912/10−21 and T the gas temperature, with J912 being the back-
ground radiation intensity at 912 Å wavelength in units of ergs Hz−1 s−1 cm−2 sr−1.
We will assume, that the gas is in ionisation equilibrium which is shown to be
reasonable later. This means dnHI/dt = 0. Since the gas in the Ly-α forest is
highly ionised and we are considering hydrogen only, we can further approxi-
mate nHII and ne− by setting them equal to the total number density nH . The
fraction of neutral hydrogen is so small, that this is true (around 0.002% for
δ = 0 and z = 3 - see Chapter 2.1.5). This transforms 2.1.13 into

nHI =
1

4× 10−12 · JHI [s−1]
· n2

H · 4.29× 10−13

(
T

104K

)−0.7

[cm−3] (2.1.14)

Since the universe considered here only consists of hydrogen, an expression
for nH can be easily found using the mean density for baryonic matter as mean
density

nH =
ρbaryon (1 + δbaryon)

mp
(2.1.15)

where mp is the proton mass. The mean density is (including all unit conver-
sions) with h = H0/100

ρbaryon =
3

8πG
H2

0 Ωbaryon (1 + z)3 (2.1.16)

≈ 1.8× 1010h2Ωbaryon (1 + z)3 (3.3× 10−20
)2 [g cm−3]

≈ 1.9× 10−29h2Ωbaryon (1 + z)3 [g cm−3]

By substituting this into Equation (2.1.15) we get

nH ≈
1.9× 10−29h2Ωbaryon (1 + z)3 (1 + δbaryon) [g cm−3]

1.7× 10−24[g]
(2.1.17)

≈ 1.1× 10−5h2Ωbaryon (1 + z)3 (1 + δbaryon) [cm−3]

We can now put Equation (2.1.17) into the expression for the number density
of neutral hydrogen Equation (2.1.14) and obtain

nHI = 1.3× 10−11
(
h2Ωbaryon

)2 (1 + z)6 (1 + δbaryon)2 1
JHI

(
T

104K

)−0.7

[cm−3]

(2.1.18)
An expression for the temperature still needs to be found. Because we do
not use a hydrodynamic simulations, dark matter densities need to be mapped
to gas temperature. Fortunately there exists a relation between them, the so
called “Equation of State”.
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2 The Gnedin Model of the Ly-α Forest

Figure 2.2.1: Comparison of the density-temperature relation in a full hydro
simulation (left) with the semi-analytical model (right). The solid
line represents the analytical approximation - the “Equation of
state”.

2.2 Mapping Dark Matter to Gas - The “Equation of
State”

Hui and Gnedin found a practical relation between dark mater density and
gas temperature (Hui and Gnedin (1997)). By taking a full hydrodynamical
simulation and comparing this with a semi-analytical model, they were able to
find a relation, they called the “Equation of state”.

In principle their semi-analytical method is quite straight forward. By assum-
ing a density evolution governed by the Zel’dovich approximation

1 + δ = det−1 [δij +D+(t)ψij ] , (2.2.1)

they were able to solve for the thermal evolution (Equation (2) in Hui and
Gnedin (1997)). In Equation (2.2.1) δij is the Kronecker delta and D+(t) is
the linear growth factor. By supplementing this with a rate equations similar
to Equation (2.1.13) and knowing the heating and cooling terms, temperatures
can be derived. They included hydrogen and helium in their calculations.

Initial conditions were then chosen randomly from a Gaussian distribution
for some fluid elements and the semi-analytical model was solved by evolving
the density evolution according to Equation (2.2.1). The result is strikingly
identical with the full hydro simulation. This can be seen in Figure 2.2.1, which
was taken from Hui and Gnedin (1997).

The semi-analytical model does not show the turn-off at high densities. This
is due to the fact, that the turn-off is governed by shocks and turbulence in the
full hydro simulation. The Zel’dovich approximation corresponds to the motion
of parallel sheets of matter. They evolve linearly as long as they do not cross
(first-crossing). At the time of first-crossing, the approximation fails (Peacock
(1999)). The density-temperature correlation is best fitted with a power law, as
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2 The Gnedin Model of the Ly-α Forest

can be seen in the semi-analytical model.

T = T0 (1 + δ)γ−1 (2.2.2)

Hui and Gnedin were able to analytically derive the power law correlation to
further emphasize that the fit is physical. This is in fact the solid line plotted in
Figure 2.2.1 which corresponds to a model with a sudden reionisation epoch
at 1 + z = 9. The full analytical model is given by Equation (2.2.2) and their
Equations (19) and (22). T0 and γ depend on the reionisation history of the
universe and are redshift dependent. A reasonable range for both values are
1.2 < γ < 1.7 and 3 × 103K < T0 < 3 × 104K. The approximation is good for
overdensities δ . 5 and reasonable good for δ . 10. This can be seen in the
right diagram of Figure 2.2.1.

Observational constraints have been derived by Schaye et al. (2000). They
used high-resolution and high signal-to-noise quasar spectra to measure T0

and γ. Using b-parameters of Ly-α absorption lines, they were able to compile
Figure 2.2.2.
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Figure 2.2.2: T0 and γ as a function of redshift 4.45 < z < 1.88 derived from
observational data.

2.2.1 The Complete Model

We now have all the ingredients to complete the derivation of the Hui and
Gnedin model. Combining Equation (2.1.18) with Equation (2.2.2) we obtain
the equation that lets us map dark matter densities to hydrogen number den-
sities.

nHI = 3.0× 10−11

(
2× 104[K]

T0

)0.7(Ωbaryonh
2

0.02

)2( 0.5
JHI

)(
1 + z

4

)6

× (1 + δ)2−0.7(γ−1) [cm−3] (2.2.3)

With this, the opacities in the spectrum can be calculated. In principle the
number densities enter Equation (2.1.8). The only addition is, that the opacities
need to be summed up over multiple streams. It is possible, that different points
in the interval [xA, xB] refer to an identical value of u.

τ (uobs) =
∑∫ uB

uA

nHI
1 + z

∣∣∣∣dudx
∣∣∣∣−1

σαdu (2.2.4)
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2 The Gnedin Model of the Ly-α Forest

We now assume, that du/dx is constant from one point on the line of sight to
the next one, the same applies to nHI . With Equation (2.1.9) and the assump-
tions made before we can analytically integrate Equation (2.2.4)

τ (uobs) =
∑ nHI

1 + z

∣∣∣∣dudx
∣∣∣∣−1

σα,0
c

b · 2

[
erfs

(
−(uB − uobs)2

b2

)
− erfs

(
−(uA − uobs)2

b2

)]
(2.2.5)

2.2.2 Summary of Method

1. Map dark matter particles to density and mean velocity field using Cloud
In Cell weighting

2. Cut line of sight through the data cube -> δbaryon, vpec

3. Map peculiar velocities to velocities containing the Hubble expansion with
Equation (2.1.6) -> u

4. Generate proper number densities, gas temperatures and b-parameters
for the line of sight using Equations (2.2.3), (2.2.2), and (2.1.10) -> nHI ,
T , and b

5. Generate an array for the spectrum with the desired resolution in velocity
space -> uobs

6. For each resolution element uobs calculate τ by summation over all the
cells on the line of sight using Equation (2.2.5) -> τ (uobs)

7. If desired, add noise to the spectrum (combination of readout noise and
shot noise)

2.3 Is the Ionisation Equilibrium Applicable?

The model of Hui and Gnedin is based on the assumption that hydrogen is in
ionisation equilibrium. That this is more or less the case for low redshifts can
be shown by crudely solving the rate equation

dnHI
dt

= −ΓHInHI +RHII (T )nenHII (2.3.1)

To simplify the problem, the gas temperature is described by the “equation of
state” T = T0 (1 + δbaryon)γ−1. Since hydrogen is considered only, we can set
ne = nHII . With ntot = nHI + nHII and ntot being related to the mean density
as above ntot = ρcrit (1 + δbaryon) /mp. The equation describing the evolution
of the plasma is then

dnHI
dt

= −ΓHInHI +RHII (T )
(
ρbaryon (1 + δbaryon)

mp
− nHI

)2

(2.3.2)
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2 The Gnedin Model of the Ly-α Forest

The approximated values for the ionisation and recombination rates stated in
the section above could be used. Here we have used the more accurate fits
given in the Appendix of (Hui and Gnedin (1997)).

The differential Equation (2.3.2) can be analytically solved (but under the
assumption, that the temperature is governed by the “Equation of state” only)

and thus find with nH =
ρbaryon(1+δbaryon)

mp
and nΓ = ΓHI/RHII

nHI
nH

= 1− nΓ

2nH

(√
1 + 4

nH
nΓ

tanh
(

(t− const)
2τ

)
− 1
)

(2.3.3)

with

τ =
1

Γ
√

1 + 4nHnΓ

(2.3.4)

The characteristic time scale τ is for low densities identifiable with the pho-
toionisation time scale. The characteristic time scale is dependant on the den-
sity of the medium and is smaller for higher densities. This might be counter
intuitive at first, since one expects a denser medium to take longer to reach its
equilibrium. In a denser medium, the number of recombinations are higher so
one would expect the photoionisation rate to be reduced by some extend. Still
the characteristic time is smaller. The higher recombination rate acts against
photoionisation as such as that the medium cannot be completely ionised. The
higher the density, the more atoms will stay neutral. Since only a fraction of
the medium needs to be ionised at the rate ΓHI , the equilibrium configuration
is reached faster and therefore the characteristic time scale is lower.

The integration constant in Equation (2.3.3) can be obtained using nHI(t =
0)/nH = 1 as border condition and is

const = −2τ artanh

 2nH

nΓ

√
1 + 4nHnΓ

 (2.3.5)

We can now derive the neutral fraction of the medium in the equilibrium con-
figuration through

Xeq
HI = lim

t→∞

nHI
nH
≈
n2
H

nΓ
(2.3.6)

How this quantity evolves with time and density is shown in Figure 2.3.1. Pa-
rameters found reasonable in reproducing the observational evidence for our
simulations have been used for this task. The model-parameters are given in
Section 2.5.

The higher the redshift, the more neutral hydrogen remains. This is mainly
governed by the amount of UV background flux, since at higher redshift, less
UV photons are present and the photoionisation rate is lower.

To calculate the time needed to reach the equilibrium, we can solve Equation
(2.3.3) using (2.3.6) for t and find, that the ionisation equilibrium is reached fast
and is thus well below the Hubble time. For redshift z = 5.7 the time to reach
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2 The Gnedin Model of the Ly-α Forest

the ionisation equilibrium is about 1.4× 106 years comparing well with the age
of the universe at that time T5.7 = 1.46×109 years. Since the UV flux rises with
decreasing redshift, the time to reach the equilibrium is even shorter at lower
redshift. The ionisation equilibrium approximation is thus a good approximation
for the model of the Ly-α forest.
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Figure 2.3.1: Redshift and density evolution of the equilibrium neutral frac-
tion Xeq

HI . Lines give different redshifts from top to down at
z = 5.7, 4.9, 4, 3, 2, 1

2.4 Resolution Study

An extensive resolution study has been carried out to find the best resolution
for our simulations. The goal is to fully capture the properties of the Ly-α forest
and simulate as big a box as possible. We therefore compared two simulations,
one 100h−1 Mpc box sized (2563 particles) (Müller and Maulbetsch (2004))
resampled to a 1003, 2003, and 4003 density and velocity grid. The second
simulation with 50h−1 Mpc boxsize and 5123 particles was mapped to a 4003

grid. The resolution of the grids highly influences the statistical properties of
the Ly-α forest. This can be seen by eye in Figure 2.4.1. Here the same LOS
with differing resolution is shown. With higher resolution, more lines are visible
in the spectrum and therefore more cosmological structures play an effect. In
the low resolution spectrum, some big features seem to be present, which tend
to disappear with higher resolution.

Substructure in the different halos is smoothed away with lower resolution.
Therefore in low resolution spectra only big and wide features are seen. To
properly model the Ly-α forest, the relatively small cosmological features are
needed.
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2 The Gnedin Model of the Ly-α Forest

Figure 2.4.1: The effect of grid resolution on the resulting spectra for z = 4 us-
ing the 100h−1 Mpc box size simulation. Shown here are spectra
generated of the same line of sight with the following sizes of one
resolution element (from top to bottom): 1h−1 Mpc, 0.5h−1 Mpc,
and 0.25h−1 Mpc

The effect of resolution on the spectrum can be best seen in the statisti-
cal properties of the spectrum. We will first look at the probability distribution
function of the normalized flux (PDF). A discussion of observational findings
is given in the Section 2.5. For this comparison the PDF of McDonald et al.
(2000) is used.

In Figure 2.4.2 the effect of resolution on the PDF is compared for the
100h−1 Mpc simulation with the three different mappings. For this, the free
parameters for each spectrum are kept the same. The lower the resolution,
the higher is the deviation of the observed PDF at low opacities. In the middle
range the change is quite small, especially at redshift z = 3. At the saturated
end of the PDF the effect of resolution is high again. The lower the resolution,
the lower is the peak at F = 0.0. The peak at F = 1.0 is getting higher, the
higher the resolution is and seems to be diverging. It can be argued, that this
is not at all in agreement with the observational data. It must be noted, that
observational data is always subjected to noise which we did not include in our
analysis of the PDF. Noise will be responsible for redistribution of photons at
the lower and upper end of the PDF, smoothing the distribution.

Another possible effect for the rise of the peak at F = 1.0 is the low mass
resolution of the 100h−1 MPc simulation. With bigger box sizes, the mass
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2 The Gnedin Model of the Ly-α Forest

resolution drops. By mapping particle data to a density grid it is possible, that
certain cells will contain no particle, even when using the adapted weighting
scheme. These cells will appear, if the mass resolution is too low, therefore the
density in these regions is too low to be resolved. Cells containing no density
will be totally transparent. This could be another possible explanation for the
diverging peak. Therefore a higher resolution simulation with smaller box size
was chosen, to gain higher mass and spatial resolution.

In general we can say, that too low a resolution will work as smoothing on
the Ly-α spectrum. Small scale features are washed out and merge to cells
with high density. The density in these cells is thus over-estimated and big
saturated lines are the result of this. The line number statistics of the Ly-α
forest is thus directly influenced by resolution.

In further discussion of the PDF we will use noise free descriptions of the
PDF by Becker et al. (2006). They fitted lognormal distribution functions to
observed PDFs, convolving the distribution function with a Gaussian kernel to
account for noise. With this it is possible to generate noise free PDFs from the
fitted data and the effects of noise can be circumvented.

The second interesting statistical property of the Ly-α forest is the b-parameter
distribution. For this, Voigt-profiles need to be fitted to the spectrum. A detailed
discussion on Voigt-profile fitting (especially automatic fitting) is given in sec-

Figure 2.4.2: The effect of grid resolution on the probability distribution func-
tion of the unified flux for a 100h−1 Mpc simulation at z = 4
(top) and z = 3 (bottom). The black line is the observed PDF
by McDonald et al. (2000). The green line represents the PDF
of the 1.0h−1 Mpc mapping for one resolution element. Blue is
0.5h−1 Mpc per element and red 0.25h−1 Mpc per element.
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2 The Gnedin Model of the Ly-α Forest

Figure 2.4.3: The effect of grid resolution on the b-parameter distribution for
a 100h−1 Mpc simulation at z = 4 (top right) and z = 3 (bottom
right). Color coding is equal to Figure 2.4.2. For comparison Fig-
ure 10 of Kim et al. (2001) is reproduced here. The reason why
the distribution differs from the observed one for large b-values
lies in a problem with AUTOVP. See section 2.5.3.1 for more in-
formation.

tion 2.5.3.1.
Observational data for the b-parameter distribution was given by Kim et al.

(2001) using their extensive line list containing over 600 fitted Ly-α lines de-
rived from five quasar spectra. By comparing their Figure 10 (reproduced in
Figure 2.4.3) with the b-parameter distribution of our spectra, it can be seen,
that resolution has an extremely large impact on that quantity. In this analysis
we used the AUTOVP automatic Voigt profile fitting code introduced in Davé
et al. (1997). Our problems with AUTOVP are addressed in section 2.5.3.1
as well as a proof of concept for a different fitting approach used in this work
to check the b-parameter distribution. The high probability for b-parameters
over b ≥ 50 km s−1 is due to our problems with AUTOVP. AUTOVP was un-
able to correctly fit the spectrum, it inserted many broad lines with very high
b-parameter. The effect of this is clearly seen in the b distribution (Figure 2.4.3).

With increasing resolution the b-parameter distribution moves into the direc-
tion of the observations, as can be seen in Figure 2.4.3. Things start to look
good with a resolution of a minimum of 0.25h−1 Mpc per cell.

Using the experience gained here, we decided to use a 50h−1 Mpc simu-
lation box, mapping it to a 4003 density and velocity grid, with the resulting
resolution of 0.125h−1 Mpc per cell. This will be shown to reproduce the sta-
tistical properties of the forest adequately. In principle, resolutions of less than
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2 The Gnedin Model of the Ly-α Forest

100h−1 kpc need to be realised to fully capture all the physics in the Ly-α for-
est (McDonald et al. (2005)). This is hard to achieve since the large scale
properties of the universe are also important for the Ly-α forest. We think, the
50h−1 Mpc box size with the 4003 mapping is a good compromise, since we
almost achieve the cited resolution of 0.1h−1 Mpc.

2.5 Our Models

As a basis for generating our Ly-α spectra and the subsequent considerations
we used a dark matter only simulation. The simulation was run using the
GADGET2 code (Springel (2005)) with 5123 particles and a particle mass of
mp = 7.75 × 107h−1M�. 3rd year WMAP cosmology has been used for the
simulation (Spergel et al. (2006)) with σ8 = 0.7 (Maulbetsch et al. (2007)).

The parameters for the Ly-α spectra synthesis giving the best results in fitting
the observational data are shown in Table 2.1. The parameters for T0 and γ
are based on observations made by Schaye et al. (2000). We read the values
for T0 and γ from their Figure 6, which is reproduced here as Figure 2.2.2,
and only varied them in the range of the error bars. The effects of T0 and γ
on the PDF are in fact quite small as can be seen in section 2.6. So the only
remaining parameter for fitting the simulations is JHI . Unfortunately it is only
weakly constrained by observations and theory (Bianchi et al. (2001)).

Since no observational data was available for redshift z = 1.0, the parame-
ters were gained by simply extrapolating the available data. The only quantity
that we could match with high certainty for that redshift was the effective opac-
ity.

To quantitatively see how close our models match with the observed data,
we also give the values of the χ2 goodness of fit test in Table 2.1. For compar-
ison, the χ2 value for a χ2-distribution with 19 degrees of freedom (the number
of bins in our PDF) and a probablilty that our models match with P = 0.90 is
χ2

0.90 = 27.2 (Brandt (1992)). Since the χ2 of our models are below this value,
we consider them as quite good. It can be seen, that the lower the redshift, the
better the fits are.

To increase the reliability of the statistical data gained through our simula-
tions, we randomly chose one hundred different lines of sight and synthesised

z T0[K] log T0 γ JHI χ2 χ2
micro

5.7 1.8× 104 4.26 1.00 0.09 19.0 36.3
4.9 1.7× 104 4.23 1.20 0.15 18.8 43.9
4.0 1.5× 104 4.18 1.15 0.25 8.7 23.4
3.0 2.3× 104 4.36 1.10 0.30 3.6 56.6
2.0 1.05× 104 4.02 1.45 0.60 1.75 72.8
1.0 0.8× 104 3.90 1.60 0.65

Table 2.1: Parameters for the Ly-α synthesized spectra. χ2 values describe
PDF without microturbulence. χ2

micro includes microturbulence.

27



2 The Gnedin Model of the Ly-α Forest

0,0 0,2 0,4 0,6 0,8 1,0
0,01

0,1

1
P
(x
)

Transmission exp(- )
0,0 0,2 0,4 0,6 0,8 1,0

0,01

0,1

1

P
(x
)

Transmission exp(- )

Figure 2.5.1: The PDF of a single line of sight (left) compared with the mean
PDF derived from one hundred randomly chosen lines of sight
(right). The black line shows observational data and the red line
is the PDF derived by our simulation.

a spectra for each. The PDF of each LOS were then combined and a mean
PDF was derived for comparison with observational data. This was necessary,
because the PDF of one line of sight was still irregular, even though a very long
line of sight of 500 Mpc length was chosen. The difference between the PDF
of one line of sight and the mean PDF is shown in Figure 2.5.1 for z = 4.0.

2.5.1 Mean Effective Optical Depth

A simple way to characterise the overall property of the Ly-α forest spectrum
is the mean effective optical depth τeff . This is defined as

τeff = 〈− lnF 〉 (2.5.1)

Schaye et al. (2003) give observational data for the effective optical depth in
their Figure 1. Our data is adjusted to their measurements as is done in Figure
2.5.2. Where there are no data points available, we assume the correlation in
the dataset to continue.

In our fitting process, the mean effective optical depth was the first criteria
we tried to match. By doing this, we could bring the free parameters nearer
to the values that could reproduce the observed PDF. After the mean opacity
corresponded to the observed values, the free parameters could be adjusted
in more detail to closer match the observed mean PDFs.

2.5.2 Flux Probability Distribution Function (PDF)

A second statistical measurable property is the (normalized) flux probability
distribution function. It describes the probability that a certain flux level is
reached in the spectrum.

Many different observationally derived PDF exist (for example Kim et al.
(2001), McDonald et al. (2000)). The problem with these data is, that they
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Figure 2.5.2: The effective optical depth of our models (stars) in the context of
measurements by Schaye et al. (2003). Open circles represent
their data points excluding the effect of metal lines in the QSO
spectrum.

are based on a small number of QSO spectra. In Becker et al. (2006) the
PDF of 63 HIRES QSO spectra is analysed. By looking at their data, it can be
clearly seen, that the variation between different QSOs with similar redshift is
very high. With this in mind, we constructed mean PDF function out of their
lognormal fits to the data and compared these with ours. The advantage of
this, as already mentioned, is that the effects of noise on the PDF are highly
reduced, so that a direct comparison with our simulated PDFs is possible. The
error bars gained from constructing the mean was the only error considered in
fitting the PDF and are Poisson. Influence by observational errors and errors
of the fits given by Becker et al. (2006) were not included in the analysis. In
reality this would enlarge the error bars even more.

With this in mind, we tried to match the PDF as well as possible but at some
points a good fit was hard to find. The main problem lies in matching the two
extreme points of the PDF (i.e. the lower and the upper part). For these parts
a compromise had to be found. In other parts of the PDF, the match is good in
the 2 sigma region as can be seen in Figures 2.5.3 - 2.5.5.

Fitting the PDF was not an easy task, especially at high redshift the shape
of our PDFs does not match the observed shape well. By looking at χ2 values
of our fits, we can say, that the models are quite good. Our fits are getting
better, the lower the redshift gets. In Table 2.1 it can be seen, that the fits
at high redshift are not that good as at lower redshift. This arises from the
high redshift PDF being a little bit off at the lower flux part (see Figure 2.5.3).
Many reasons can be responsible for this. Finding the right parameter for JHI
was very difficult, since it had the biggest effect on the PDF. This is shown
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in section 2.6, where the effects of the different parameters are discussed. It
could therefore be, that our parameters at high redshift are not well chosen or
there is a problem with the model. The fit for z = 2.0 and z = 3.0 have a very
low χ2 since these fits are straight on the observational data.

Another possible explanation for our fits not matching the observed PDF at
high redshift could be the low normalisation of our dark matter simulation with
σ8 = 0.7. This directly influences structure formation and would mean, that
structures are not evolving as fast as they really did. Higher density regions do
not form that fast and the simulated PDF would show less saturated lines. A
fact that would be directly seen in the Ly-α spectra. Indication for this is seen
in the PDF for z = 5.7 and z = 4.9. There the overall shape of the PDF does
not match the observed one. The observed PDF show a slight ’S’ form for both
redshifts. Our PDFs also follow this form, but the ’S’ is stronger. The overall
form of the PDF cannot be greatly influenced by choosing different parameters.
It can therefore be seen, that low density regions are more numerous than high
density regions, emphasizing our argument.

In the PDF for z = 5.7 it can be seen, that our PDF matches most parts of
the observed one. At the important point F = 0.0 the deviation of the fit to the
observations is big. To match this point better, JHI needs to be decreased.
But then the rest of the PDF would decrease as well and would not match
the observations anymore. Thus varying JHI does not help. If one argues,
that for high density regions the ionisation equilibrium is not yet reached, these
parts would be more opaque and more saturated lines would be seen in the
spectrum.

It is therefore hard to say, why we cannot match our PDFs better to the ob-
served data for high redshift. A reasonable explanation is the low normalisation
σ8 of our simulation. Further we cannot say what effects the ionisation equilib-
rium could have on the PDF. The fraction between the time to reach equilibrium
and the Hubble time is small, but it could be, that it is still big enough to have
an effect on the PDF at high redshift. Further radiative transfer effects might be
responsible for the deviations. We are going to address this question in more
detail in Chapter 5, where we study possible transfer effects in detail.

To illustrate the problems of fitting the PDF, we show the PDF at z = 4.0
for different JHI values. The problem with this PDF is, that the probability at
the right end of the PDF is too low. It could be, that the observational data
are biased by continuum fitting. If the continuum was placed too low, then
a higher probability is reached for F = 1.0. But changing the continuum level
only compresses the shape of the PDF to the left but does not affect the overall
shape.

By increasing JHI , the probability at the right end is increased. This is seen
in Figure 2.5.6. But while in the right part of the PDF reaches the real distribu-
tion, the rest of the PDF starts to deviate greatly. Changing JHI just a little can
have a very big impact. For us a fit was considered good when as much of the
PDF as possible matched.
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Figure 2.5.3: PDF of our simulated spectra (red) compared with mean PDFs
obtained from observational data by Becker et al. (2006) (black).
Redshifts are from top to bottom: 5.7, 4.9. Error bars give 1σ
deviation without considering errors of the lognormal fits to the
data and the data itself.
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Figure 2.5.4: Continuation of Figure 2.5.3. Redshifts are from top to bottom:
4.0, 3.0. Error bars give 1σ deviation without considering errors
of the lognormal fits to the data and the data itself.
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Figure 2.5.5: Continuation of Figure 2.5.3. Redshifts are from top to bottom:
2.0, 1.0. For z = 1.0 no observational data for comparison was
available. Error bars give 1σ deviation without considering errors
of the lognormal fits to the data and the data itself.
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Figure 2.5.6: The PDF at z = 4.0 for different values of JHI . The black line
represents the observational data by Becker et al. (2006).

2.5.3 b-Parameter Distribution

A further statistical property is the b-parameter distribution. The b-parameter
(see Equation 2.1.10) is a temperature measure of an intervening cloud (not
solely, because turbulent motion can also influence the b-parameter). It af-
fects the width of a spectral line, in contrast to the number density, which only
influences the depth of the line.

To measure the b-parameter, Voigt-profiles need to be fitted to the spectrum.
This is only convincingly possible, when a spectral line is not blended. Is a
spectral line blended, more than one profile need to be fitted to the complex.
Mathematically speaking, the problem of inverting blended Voigt-profiles has
an infinite number of solutions. Many possible ways exist to fit blended lines.
Since at high redshift, most of the lines are blended, these line lists are highly
uncertain. No observer and no automated code will produce the same line list
for the same spectra. The problem of automatic line fitting will be addressed
later in connection with our problems with AUTOVP and the proposal of a new
fitting algorithm.

By looking at the observationally deduced b-parameter distribution (Figure
2.4.3 left panel), it can be seen, that there is almost no evolution of the dis-
tribution with redshift (at least in the redshift range covered by the data). In
a rough picture this is reproduced with our simulation (see Figure 2.5.7). For
measuring the b-parameter distribution in our synthesized spectra, we used
the proof-of-concept algorithm described in the next subsection. At higher red-
shift, especially z = 5.7, a broadening of the distribution can be seen. This is
due to the fact, that at these high redshifts, it becomes merely impossible to fit
Voigt-profiles properly to the spectrum, because the lines are heavily saturated
and blended.
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At lower redshift, the distribution can be reproduced surprisingly well. At
z = 3 our code finds too many lines with b ≈ 30 km s−1 but the overall trend is
reproduced. This vanishes at z = 2, where not so many blends exist anymore
and we reproduce the observations nicely.

With confidence we can say, that the method described here and applied
to our simulations is reproducing the observational findings. That the model
proposed by Hui and Gnedin reproduces all the statistical properties of the
Ly-α forest has been known since the introduction of the model. It is now
time for us, to use this model as the basis for applying radiative transfer in
the cosmological context and see how other effects (like the proximity effect of
QSO) influence the Ly-α forest.

Because of all the uncertainty in the fitting procedure the b-parameter cannot
be used to say much about fine changes in its distribution. The errors are too
high. Only the rough features can be considered. This is quite unfortunate,
since this quantity gives information about the temperature of the medium,
which would be very interesting to study in greater detail.

2.5.3.1 Voigt-Profile Fitting

Spectral lines in the Ly-α forest can be fitted with a Voigt-profile. The profile
resembles the physical mechanisms that create the line; damping of the line
and thermal broadening. The optical depth in the line can be described with

τi (λ) = Ci ·N · a ·H [a, x (λ)] (2.5.2)

where N is the column density, H [a, x (λ)] is the Voigt-profile function and Ci
and a are constants defined as

Ci =
4
√
π3e2

mec

fi
Ai

(2.5.3)

Here me is the electron mass, Ai is the Einstein-coefficient of the ith atom
transition and fi is the matching oscillator strength. All the other constants
have their usual meaning.

a =
λ2
iAi

4πc∆λD
(2.5.4)

where λi = hc/Ei with Ei being the ith energy level and h the Planck constant.
∆λD = (b/c)λi is the term responsible for thermal broadening. The Voigt-
profile function is now given by

H(a, x) =
a

π

∫ +∞

−∞

e−y
2

(x− y)2 + a2
dy (2.5.5)

with x = (λ− λi) /∆λD and y = ν/b where ν is the wavelength.
These profiles need to be fitted to the QSO spectra in order to deduce the

column density and the b-parameter. In real observational data, this process
is a delicate and time consuming process, since QSO spectra not only include
Ly-α but higher transitions of hydrogen as well. Furthermore different elements
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Figure 2.5.7: b-parameter distribution in our spectra (red line). Where avail-
able, observational data by Kim et al. (2001) is shown (black line).
Redshifts shown from left to right and top to bottom are: 5.7, 4.9,
4.0, 3.0, and 2.0. Lines below b ≤ 20 km s−1 in the observational
data are introduced by the fitting algorithm used when it tries to
fit the noise. They should not be considered.
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that blend with other lines are present. In synthesized spectra we know with
which element and transition we are dealing and an automated fitting process
seems appropriate.

A widely used automatic Voigt-profile fitter is AUTOVP described in Davé
et al. (1997) and available at his homepage (http://ursa.as.arizona.edu/~rad/).
AUTOVP works as such, that lines are fitted to the spectra by using some kind
of algorithm including χ2-minimization. Then when the initial fitting model has
been found, a second χ2 minimization is carried out, this time looking for lines
that do not affect the spectrum (artifacts of the algorithm). These lines are
excluded from the list and a new χ2 is computed. Also the line parameters in
the final list are slightly changed to further minimize χ2.

Though widely used, we had some major problems with the tool, that could
not be solved with tweaking the input parameters. AUTOVP gives different re-
sults, if the resolution of the spectrum is changed, even if this does not affect
the overall appearance of the spectrum. It seems that AUTOVP is assum-
ing some kind of resolution. The result even changes dramatically when the
spectrum is split up into different sections. This needs to be done otherwise
AUTOVP fails or is extremely slow. Splitting it up in 10 slices gives a different
result, than splitting it into 20.

Motivated by this, we tried to adapt a new fitting algorithm which is in fact
very fast and resolution independent (as long as lower resolution does not af-
fect the overall appearance of the spectrum). The algorithm presented here
has been used to derive the b-parameter distribution in 2.5.7. We need to em-
phasize, that the algorithm was only developed to a proof-of-concept state. It
is not working perfectly and there are many cases where the result is not satis-
factory. Adding to this, no treatment of saturated lines is included. Sometimes
the algorithm fits saturated lines, sometimes it does not. The results given in
saturated lines is only sometimes satisfactory. A clear treatment needs to be
added. Besides this incompleteness, the result is surprisingly good.

First of all, we need to use an approximation to Equation 2.5.5 since this in-
tegral cannot be solved analytically. For this we used a newly found expression
for the Voigt-profile described in García (2006). This is their Equation 25 and
24 which we reproduce here

H (a, x) ≈ e−x2

[
1− a 2√

π
K(x)

]
(2.5.6)

with

K(x) =
1

2x2

[(
4x2 + 3

) (
x2 + 1

)
e−x

2 − 1
x2

(
2x2 + 3

)
sinhx2

]
(2.5.7)

The idea now is to fit the lines as follows. First, we look for minima in the spec-
trum. These minima represent spectral lines which we can intuitively identify.
We take one of these minima and try to fix a Voigt-profile to that point, since
the minimum is the center of the profile.

The minimum of the Voigt-profile we want to fit the line with, needs to be at
the same place as the minimum point we have found. It should not change
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when we either change the column density or the b-parameter. This means,
that changing one of these two free parameters automatically implies a certain
value for the other parameter, when a second point on the line is used to solve
for the remaining unknown variables of the Voigt profile function.

We now take Equation (2.5.6) at the central point x = 0 and solve the Equa-
tion for H(a(b), 0), resp. N(b). This results in

N(b) =
τ0γ

2δ2b2
√
π

αβ (γδ · b ·
√
π − 2β)

(2.5.8)

with τ0 being the optical depth at the central point and the other constants

α = Ci

β = λ2
iAi

γ = 4πc (1 + z)

δ =
λi
c

To solve Equation 2.5.8 for b, we need a second point of the spectral line profile
and project this into the restframe description of the Voigt-profile with

x(b) =
λx − λ0

∆λD
=
λx − λ0

b · δ

where λ0 is the frequency of the central point and λx is the frequency of a point
next to the central point on the spectrum. For the point x we know the optical
depth τx. Now taking 2.5.2 for the point x on the spectrum we get

τx = α
β

γδ · b
H (a, x)N(b) (2.5.9)

Adding all the pieces we find an expression for τx(b) that can be numerically
solved for b

τx = e−x(b)2

[
1− β

γδ · b
2√
π
K (x(b))

]
τ0

1− 2βγδ 1√
π·b

(2.5.10)

The algorithm proposed now works like this:

1. Find all the minima in the spectrum

2. Pick one minimum and get the central optical depth τ0

3. For each pixel surrounding the central point (maybe up to 10 pixels left
and right), solve 2.5.10 - Do this as long as the deviation in the resulting b
is not big, because if it is deviating to much, we are influenced by another
line.

4. Create the mean value of all the b-parameters derived for each pixel,
weighting pixels with more sTable results (usually those further away from
the centrum, because the inversion of 2.5.10 is more stable there and not
so much affected by uncertainties in the position of the minimum)
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5. Do this for the left and the right side of the line. Choose the b-parameter
that is lower for that line to be the correct one (because asymmetric lines
are the result of two different lines blended together and these need to
be separated)

6. When there are no minima left, subtract the current model spectra and
start at point 1 again with the residual spectra.

7. Do this until you reach a threshold where you decide to stop.

It is now advisable to take the model line list and do a χ2 minimization like
AUTOVP is doing in the second phase of the analysis. We tried to put our
model into the AUTOVP χ2 minimizer but failed, because even there AUTOVP
seems to be resolution dependant.

The analysis shown in 2.5.7 is done the way described here, without the χ2

minimization proposed at the end.

2.5.3.2 Proof-of-Concept

The proposed algorithm works extremely well for a single line, reproducing
almost exactly the parameter of the test line. Even for weakly blended lines,
the performance is quite good. Applying the algorithm to simulated spectra
sometimes gives a very good result, sometimes it seems, that some fine tuning
or further ideas in the algorithm are needed. How well or bad the fit is can be
seen in Figure 2.5.8.

In the upper panel a good fit is shown. At λ = 5330Å it can be seen, that
the algorithm still misses lines. Why this is still the case needs to be evalu-
ated. On the right side of the same graph a saturated line can be seen. The
algorithm was able to fit it. The minimum of this line found by the algorithm
was somewhere to the right of the left foot-point of the saturated line. The al-
gorithm could only recognise the left flank of the line, because it could not find
the right side (the evaluated minimum of the line was to far to the left). There-
fore it is not surprising, that the right flank does not fit. As mentioned before,
saturated lines are not treated explicitly yet, this is still something that needs
to be implemented.

The bad example in the lower panel shows a problem with the method. For
example left to λ = 4910Å a triplet can be found. The fit does not match
the triplet at all. The reason for this lies in the simple fitting procedure. The
spectrum is fitted from left to right, processing the minima in this order. This
is too simple. In the case of the triplet the strongest component should be
fitted first. This is the middle one in that case. This component needs to be
subtracted from the triplet and then the other two can be fit. The algorithm
needs to be improved for cases like these.
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Figure 2.5.8: A good (top) and bad (bottom) example of Voigt-profile fits pro-
duced with the fitting algorithm proposed here. The red spectrum
is the original synthesized spectrum. The black line represents
the fit by the algorithm. Sometimes lines are missed and some-
times the fit is really off.

2.6 The Effect of T0, γ, and JHI on the PDF Shape

We now want to discuss the effect the different model parameters have on the
PDF. For this we took our initial model for z = 5.7 and z = 3.0 and varied only
one parameter.

The first parameter we are going to discuss is T0. In Figure 2.1.8 the effects
are shown. The influence of T0 is quite different at the two redshifts. At z = 5.7
increasing the mean temperature just leads to an increase in probability at flux
higher than 0.1. The curvature at the right side is influenced by higher tem-
peratures. Opacities from the saturated part of the spectrum decrease a little
bit, therefore more lower density regions in the spectrum become somewhat
thinner; i.e. regions that were on the brink of becoming optically thin.

Things start to look different at z = 3.0. In principle the effect is the same. At
high flux F ≥ 0.9 the probability rises a little bit (between 0.2 and 0.3). Where
probability is rising, it must fall at some other place, which is near the lower part
of the PDF. The effect of a higher mean temperature is surprisingly small, even
at F = 1.0. Physically this is understandable. The gas at z = 3.0 is already
highly ionised. Thus a higher gas temperature (which increases the ionisation
fraction due to reduced recombination) will have only little influence. At z = 5.7
the medium is still partly neutral, therefore the effect is higher.
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Now we want to look at the parameter responsible for ionisation, the UV
flux JHI . We expect to see an increase in transparency with increasing JHI .
Exactly this can be seen in Figure 2.6.2 for redshift z = 5.7. An increase in the
ionising flux increases the probability of the medium being more transparent. It
is interesting, that the PDF drops at the right side for high flux levels. It seems
that only a small fraction of the gas is thin enough, to be ionised. The rest of
the gas is so dense, that more flux has no effect on the opacity.

The transparency increases as well for z = 3.0. Here there probability is
being redistributed from every point in the PDF to F = 1.0. Since the gas is
already highly ionised, an increase in the ionisation rate quickly ionises the rest
of hydrogen, leaving it completely transparent.

Now for the last of the free parameters γ. This parameter mainly influences
the temperature of under-dense regions. For γ = 1 the temperature is con-
stant. Any value above this will make the temperature for δ < 1 to fall and
δ > 1 to rise. The higher γ, the faster the temperature falls at low density and
the higher is the increase of temperature at high densities. This means that
with higher γ the gas should become less transparent for low densities. The
opposite should happen for high densities. The effect does not manifest itself
greatly in the high density regions though.

In Figure 2.6.3 the effect for the low density regions can be seen best at
z = 5.7. There the opacity rises with higher γ, influencing the slope of the
distribution at the low density end. For z = 3.0 the effect on high densities is
clearly seen. The medium becomes more transparent for higher γ making it
more probable to find flux levels higher than zero. The effect on the low density
side is not that big. At F = 1.0 probability falls only a little bit. The combination
of both effects increases the probability in the remaining region of the PDF.

The parameter influencing the PDF the most is definitely JHI . We have
seen that the other parameters play only a minor role compared to the flux of
the ionising radiation.

Figure 2.6.1: Influence of T0 on the PDF at redshift z = 5.7 (left) and z = 3.0
(right)
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Figure 2.6.2: Influence of JHI on the PDF at redshift z = 5.7 (left) and z = 3.0
(right)
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Figure 2.6.3: Influence of γ on the PDF at redshift z = 5.7 (left) and z = 3.0
(right)

2.7 Microturbulence - Velocity Dispersion

The need to simulate the Ly-α forest as highly resolved as possible and still
capture as much of the universe as possible lead to the idea of combining sub
resolution effects and adding them to the spectrum synthesis. In analogy to
a practise known as microturbulence to the stellar astrophysicist, we tried to
expand the b-parameter used in Equation (2.1.9) by a similar quantity.

b′ =
√
b2 + ξ2

micro (2.7.1)

The idea was to include the turbulence inside each cell (described by the ve-
locity dispersion of the particles in each cell) to our model. It should be thus
possible to capture effects, that are below the resolution of the simulation.

We mapped the velocity dispersion of the dark matter particles to a grid,
weighting the dispersion according to the number of particles in the cell. Some-
times only one or two particles are present in each cell, leading to an overesti-
mation of the microturbulence.
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2 The Gnedin Model of the Ly-α Forest

The velocity dispersion was then added to the b-parameter as stated in
Equation (2.7.1). Since only the velocity dispersion in the direction of the line
of sight is needed, the total dispersion needs to be projected onto the LOS.
Since the velocity dispersion is the total dispersion of all spatial coordinates,

vtotal disp =
√
v2
x disp + v2

y disp + v2
z disp =

√
3 · v2

disp (2.7.2)

we need to divide by a factor of
√

3 to obtain the projected velocity dispersion
along the LOS.

When including this additional temperature to our spectra, we have problems
reconstructing the observed PDF. The effective optical depth poses no problem
since the scatter in the observational data is big and the values lie in the error
bars. Microturbulence affects the probability distribution greatly. Using the
same values of T0, γ and JHI derived for our simulation, the effects on the
PDF is shown in Figure 2.7.3.

For some redshifts higher values of JHI would be needed, to make the data
fit again, for others lower JHI . The redistribution in probability space is due
to the additional broadening of certain lines. This can be clearly seen in the
b-parameter distribution Figure 2.7.4.

While for high redshift the effect is quite small for the b-parameter, the ef-
fect in the PDF could be easily corrected through a higher JHI . But for lower
redshift the b-parameter gets heavily redistributed and the PDF changes its
overall shape.

That the effect on the b-parameter is quite small at high redshift could have
its origin in the cosmic evolution. The mean density is decreasing with lower
redshift. This directly influences the mean temperature, so the same is true for
T0 after z = 3. A combination of both lets the velocity dispersion play a more
important role with lower redshift since thermal effects become smaller, even
if the mean velocity dispersion is decreasing as well. However the dispersion
does not decrease as fast as the other two quantities. This means that at
high redshift, line broadening would be mainly governed by the temperature.
At lower redshift the effect of the temperature drops and turbulent motion can
influence the spectrum more and more.

It can be argued, that we did not try to find new parameters for the PDF
including microturbulence. Therefore we fitted the PDF including microturbu-
lence to reproduce the observational data and obtained new JHI values. We

z T0[K] log T0 γ JHI χ2

5.7 1.8× 104 4.26 1.00 0.13 40.7
4.9 1.7× 104 4.23 1.20 0.20 17.4
4.0 1.5× 104 4.18 1.15 0.40 9.6
3.0 2.3× 104 4.36 1.10 0.80 4.6
2.0 1.05× 104 4.02 1.45 1.1 6.4

Table 2.2: Parameters for the Ly-α synthesized spectra including microturbu-
lence. It can be clearly seen, that the JHI values needed for these
fits are too high.
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2 The Gnedin Model of the Ly-α Forest

Figure 2.7.1: UV background at λ = 912Å for different models by Bianchi et al.
(2001) using different galaxy photon escape fractions. The mod-
els are derived for a Ωm = 1 universe. The separate contributions
of the different components included in the models are shown.

did not change the parameters for the effective equation of state T0 and γ,
since microturbulence does not alter the state of the gas globally. To obtain
maching PDFs the UV flux parameter had to be increased by a great amount.

The new values for JHI are too big, if they are compared to models of the
UV background flux (we used the ones given by Bianchi et al. (2001)). Bianchi
et al. created models of the UV background including contribution by quasars
and galaxies. The new JHI would only fit, if a photon escape-fraction of fesc =
0.4 is assumed, which is unrealistic. To compare our new values of JHI , see
Figure 2.7.1. One has to keep in mind that JHI = 0.7 J912 and that the models
presented by Bianchi et al. only holds for a Ωm = 1.0 universe.

The fits as a whole are quite good, χ2 values are almost as good, as without
microturbulence. A complete listing of the fit parameters including microturbu-
lence is given in Table 2.2.

Plots of the fitting PDF using microturbulence are shown in Figure 2.7.5. The
b-parameter distribution did not change, since it is not dependent on JHI . We
kept the other parameters constant, since there is no reason that the physical
status of the gas should change by including microturbulence.

We therefore conclude, that including a microturbulence in the way we have
done, is not really feasible. In our implementation of the microturbulence, the
effect is too large due to the low number statistics in the velocity dispersion
(see χ2

micro values in Table 2.1). Statistical effects play a role, since the velocity
dispersion and thus the microturbulence is determined only by a small number
of particles in a cell. By plotting density against the velocity dispersion (2.7.2)
it can be seen, that scatter is great at low densities (i.e. the probability is high
over a big part of the dispersion axis). That the idea of a microturbulence is
not at all unphysical can be seen in the visible exponential relation between
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2 The Gnedin Model of the Ly-α Forest

Figure 2.7.2: Relation between overdensity and the microturbulence ξmicro.
Left plot shows z = 5.7 the right plot z = 3.0. The colour cod-
ing describes probability distribution. Blue means low probability,
red high.

density and velocity dispersion.
Further studies with hydro simulations would be needed to fully discuss the

effect of a microturbulence on the Ly-α spectrum. That microturbulence has
an influence can be seen in our plots of the PDF, but the quantitative effect
cannot be determined. Including a microturbulence would directly affect the
parameters T0, γ and JHI since other values need to be found to make the
PDF fit again.
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Figure 2.7.3: PDF of our simulated spectra without (red) and with (blue) micro-
turbulence compared to mean PDF obtained from observational
data by Becker et al. (2006) (black). Redshifts in the plots are
from left to right and top to bottom: 5.7, 4.9, 4.0, 3.0, and 2.0.
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Figure 2.7.4: b-parameter distribution in our spectra. Thin red line is the model
without microturbulence and the blue line represents the model
including it. Where available, observational data by Kim et al.
(2001) is shown (thick line). Redshifts shown from left to right
and top to bottom are: 5.7, 4.9, 4.0, 3.0, and 2.0.
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Figure 2.7.5: PDF of our simulated spectra including microturbulence (blue)
now fitted to the observational data by Becker et al. (2006)
(black). Redshifts in the plots are from left to right and top to
bottom: 5.7, 4.9, 4.0, 3.0, and 2.0.
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3.1 Radiative Transfer - a Short Introduction

The equation describing the macroscopic interactions of photons with matter
is difficult to solve. The difficulty lies mainly in the multidimensionality of the
transfer equation. Let us assume that some radiation Iν

(
~r, ~Ω, t

)
in the interval

dν passes through a cell ds and cross section dσ in time dt. The direction of the
ray is given by ~Ω, with the light cone opening angle dω. The transfer equation
is then

[
Iν

(
~r + ∆r, ~Ω, t+ ∆t

)
− Iν

(
~r, ~Ω, t

)]
dσdωdνdt

=
[
ην

(
~r, ~Ω, t

)
− χν

(
~r, ~Ω, t

)
Iν

(
~r, ~Ω, t

)]
dsdσdωdνdt (3.1.1)

with ην being a source term from processes like reionisation and χν is a sink
term for absorption. This can be written in a cosmological context in comooving
coordinates as (Norman et al. (1998))

1
c

∂Iν
∂t

+ ~Ω · ∇Iν
1 + z

1 + zem
− H(t)

c

(
ν
∂Iν
∂ν
− 3Iν

)
= ην − χνIν (3.1.2)

where H(t) is the time dependant Hubble constant and zem the emission red-
shift of the photon.

The full solution can be obtained by solving for all of the seven dimensions,
namely the three components of ~r, the two angular components φ and θ, the
frequency ν, and the time t. The “unusual” variables in this transport equation
are the angular components, and many different ways of visualising these two
components in the whole problem setup can be found in the literature. In
principal, these two variables are responsible, that at a given point in space,
all photons coming from different angles of the local “sky” are included. At a
given point, photons can arrive from different angles, therefore integration over
the whole “sky” at every point is necessary.

Even with today’s computers, we are far from fully solving the radiative trans-
fer equation. Simplifications and models are needed. In stellar astrophysics
different methods to approximate Equation (3.1.1) exist. The most simple ap-
proximation used is the concept of a plane parallel atmosphere. More sophis-
ticated approaches exist and for a thorough overview see (Mihalas (1978) or
Peraiah (2002)).

In extragalactic astronomy (and modern stellar astronomy), the plane paral-
lel atmosphere cannot be used. Different simplified geometries can be applied,
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like spherical symmetry for a HII-cloud or a cylindrical model for spiral galax-
ies. But it can be easily understood, that these models have its limitations, and
that a geometry independent method needs to be developed. For example
to simulate the effect of dust in a galaxy, Monte-Carlo simulations have been
used, like in (Jonsson (2006)).

In cosmology, radiation transfer is an emerging field. Different groups de-
velop different schemes for solving the equation. Mostly they rely on one
approximation: all the radiation effects are treated locally (which on galactic
scales is true, if the medium is dense, i.e. the optical depth is high enough).
This leads to the so called “on-the-spot” approximation, excluding scattering
phenomena. One of the codes applying this approximation is for example C2-
Ray by Mellema et al. (2006).

As has been pointed out by different groups, this cannot be applied in cosmo-
logical contexts (Maselli et al. (2003) and Verhamme et al. (2006)). Ritzerveld
(2005) argues, that about 12% of HII regions are in fact dominated by diffuse
radiation. The densities in the intergalactic medium are so low, that scattered
photons can travel for many kpc, until they are scattered once again or finally
absorbed. This non-locality poses a big problem for many numerical schemes.
In Figure 3.1.1, the mean free path

rmean =
1

αH0nH0
(3.1.3)

for different overdensities is plotted. By comparing the mean free path to the
cell size in a simulation one can determine, if the “on-the-spot” approximation
is valid or not. It is valid for cell sizes bigger than the appropriate mean free
path of a photon.

To include scattering processes in a numerical scheme, one can choose a
Monte-Carlo method. This is the easiest scheme for a diffuse component. It
is also possible to have diffuse components in ray-tracing codes, but such a
scheme is inefficient. A box with N3

c cells would need N6
c more rays cast per

time step. Each cell is a source and needs to be traced to each cell in the box.
Ciardi et al. (2001) and Maselli et al. (2003) introduced such a Monte-Carlo

scheme. Their code, called CRASH, can handle hydrogen and helium only,
but different species can be included easily.

Based on their method, we implemented their scheme and added our own
formulation for background photons. Further we can study light cone effects
with our code. For this we propagate photons at the speed of light and prob-
lems arising with this implementation of CRASH will be discussed. Before we
can go into more details of the scheme itself, we want to start with general
topics, like all the atom physical effects implemented in our version of CRASH
or a quick introduction to Monte-Carlo methods.
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Figure 3.1.1: Mean free path of a photon in different overdensities. For this
analysis only hydrogen is considered and the model of Gnedin
was applied to map overdensities δ to gas density. The mean
free path is given in comoving units.

3.2 Atom Physics

3.2.1 Photoionisation

Hydrogen can be photoionised if radiation with energies higher than 13.6 eV
is absorbed by an atom. The electron will pass the ionisation threshold and
the remaining energy will be transferred to the electron as kinetic energy. The
reaction describing photoionisation of hydrogen can be written as

HI + γ → HII + e−

for γ ≥ εion, where εion is the energy needed to ionise the atom. If the energy of
the photon exceeds the ionisation energy, the remaining energy is transferred
to the electron as kinetic energy,

hν = εion +
1
2
mv2 (3.2.1)

The probability, that a photon is absorbed, is governed by the photoionisa-
tion cross-section. The cross-section for neutral hydrogen used in CRASH is
originally taken from Osterbrock (2006) and is

σH0 (ν) = 6.3× 10−18 (ν/νth,HI)
−3 [cm2] (3.2.2)
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where νth,H0 is the ionisation threshold frequency νth,H0 ≈ 3.3 × 1015 s−1.
The absorption caused by hydrogen is proportional to the amount of hydro-
gen atoms per volume. Therefore it can be expressed by means of the cross
section and the number density

dτ = σH (ν)nHI (~x) ds (3.2.3)

The absorption probability P (τ) is then

P (τ) = 1− e−τ (3.2.4)

3.2.2 Recombination

When free electrons interact with ionised atoms, two things can happen. In an
optically thin gas, the electron will recombine directly to a certain level n. This
is called Case A recombination. In thicker nebulae the recombination will not
be directly to level n. Instead the electron will first populate a higher level and
from there on cascade downward, which is called Case B (Osterbrock (2006)).

For example, consider an electron recombining with an ionic hydrogen core.
The final state of the electron shall be the first level n = 1. In Case A recom-
bination the electron would directly go to the first level and therefore release a
photon with energy ≥ 13.6eV. In Case B a certain probability exists, that the
electron for example will populate level n = 2 first and then from there on go
down to n = 1. Now two photons have been released, one with energy ≥ 3.4eV
and one Lyβ with 10.2eV.

Physically these two effects are included in the recombination rate α and
depending on the problem the appropriate rates need to be chosen. Recom-
bination is dependent on the kinetic energy of the electrons in the gas (i.e.
the temperature), because if the kinetic energy is high, it is unlikely that the
electron will be captured by the atom potential.

The total recombination rate for hydrogen where all the different recombina-
tion probabilities for each level of the atom have been considered is given by
(Cen (1992))

αHI (T ) = 8.40×10−11T−1/2

(
T

103 [K]

)−0.2
(

1 +
(

T

106 [K]

)0.7
)−1

[cm3s−1]

(3.2.5)
In CRASH, only recombination events leading to photons able of re-photoionising
atoms elsewhere are considered. In the case of hydrogen, these are only (di-
rect) events to the n = 1 level. Therefore the recombination rate to the first
level is needed and we fitted the data derived by Hummer (1994) with a func-
tion similar to Equation (3.2.5)

α1,HI = 1.5703×10−11T−1/2

(
T

103 [K]

)−0.0251
(

1 +
(

T

106 [K]

)0.9541
)−1

[cm3s−1]

(3.2.6)
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3.2.3 Diffuse Radiation by Recombining Electrons

Given the facts discussed about photoionisatoin (Section 3.2.1), it is under-
standable that in the recombination process any kinetic energy the electron
possessed before recombining is given to the emitted photon. We therefore
expect a continuous spectrum above the ionisation energy, since electrons will
populate velocity space continuously.

To calculate the spectrum produced by recombination we need to solve the
recombination part of the transfer equation. Since this will be an important
part of the radiative transfer scheme, the complete deduction for the spectral
distribution of diffuse emission will be given in detail. The notation found in
Mihalas will be used, so that a direct comparison with Mihalas is possible.

We start with the radiative transfer equation

µ

(
∂Iν
∂z

)
= −n0pνhνIν + n1ne (v)F (v)

(
h2ν

m

)
+ n1ne (v)G (v) Iν

(
h2ν

m

)
(3.2.7)

Here, F (v) is the spontaneous recombination rate (i.e. collision of a thermal
electron with an ionic atom core) and G(v) is the induced recombination rate.
Induced recombination occurs, when the electromagnetic field of a photon
stimulates the electron to recombine with the ion. The electron can be in-
terpreted as an oscillating dipole that is in resonance with the passing photon.
Depending on the phase of the two oscillators, the electron dipole looses en-
ergy, resulting in a downward transition, which in turn emits a second photon.

Neglecting stimulated emission, the emissivity of the spontaneous recombi-
nation is

ην = n1ne(v)F (v)
h

m
· hν (3.2.8)

The probability that an atom is ionised by a photon with the wavelength ν shall
be pν . Then, the absorption coefficient is αν = hνpν . Equation (3.2.8) thus
becomes

ην = n1ne(v)F (v)
h

m

αν
pν

(3.2.9)

Since we are interested in the radiation caused by recombining electrons, and
the velocity distribution of the electrons directly affect the emitted spectra, we
enter the Maxwell distribution

ne(v) = ne

( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
4πv2 (3.2.10)

in the equation above and get

ην = ne

( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
4πv2 · n1F (v)

h

m

αν
pν

(3.2.11)

The Saha-Equation gives the fraction of ionised atoms in a plasma in relation
to the neutral component. This equation can only be applied if Local Thermal
Equilibrium (LTE) is assumed.(

n0

n1

)
= ne

(
g0

2g1

)(
h2

2πmkT

)3/2

exp
(εion
kT

)
(3.2.12)
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Here, g0 and g1 are the statistical weights of the neutral and the ionised state.
The statistical weight is calculated by gi = 2J + 1 where J is the total angular
momentum of the species. In case of HI, g0 = 2 and HII g1 = 1.

By noting that the ionisation energy εion is connected in the following way
hν = εion + 1

2mv
2 (see Equation 3.2.1), we can enter the Saha-Equation into

(3.2.11) and get

ην = ne

( m

2πkT

)3/2
exp

(
−mv

2

2kT

)
4πv2 ·

n0
ne

(
2g1

g0

)(
h2

2πmkT

)−3/2

exp
(
hν
kT

)
exp

(
−1

2
mv2

kT

)F (v)
h

m

αν
pν

(3.2.13)
A relation between the photoionisation probability pν and the recombination

rate F (v) can be found. This is the so called Einstein-Milne Relation and is
derived as followed (again using the Mihalas notation):

In thermodynamical equilibrium, the number of ionisations equals the num-
ber of recombinations. The equation of ionisation equilibrium with Bν = hνIν
being the specific intensity is

n0pνBν = n1ne(v) [F (v) +G(v)Bν ]
h

m
(3.2.14)

With some minor conversions we get

Bν =
n1neF (v) hm

n0pνm− n1ne(v)G(v)h
=
F (v)
G(v)

/(
mn0pν

n1ne(v)G(v)h
− 1
)

(3.2.15)

which is identical to Equation (4-90) in Mihalas (1978). From the Planck law
we also know, that the specific intensity in thermal equilibrium is

Bν(T ) =

(
2hν3/c2

)
ehν/kT − 1

(3.2.16)

By comparing Equation (3.2.15) with (3.2.16) (i.e. equating the nominator and
denominator of each equation), we find

F (v) =
(

2hν3

c2

)
G(v) (3.2.17)

and
pν
G(v)

=
h

m
ne(v)

n0

n1
ehν/kT (3.2.18)

The velocity distribution of the electrons is again governed by Equation (3.2.10).
For the term n0/n1 we can enter the Saha-Equation. Again, keeping in mind
that hν = εion + 1

2mv
2 for recombining electrons using (3.2.12) one finds

pν
G(v)

=
(
h

m

)
ne
(

m
2πkT

)3/2
exp

(
mv2

2kT

) 4πv2 1
ne

(
2g1

g0

)(
h2

2πmkT

)−3/2
exp

(
mv2

2kT

)
exp

(
hν
kT

)
 exp

(
hν

kT

)
(3.2.19)
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Simplifying yields

pν =
8πm2v2

h2g0
G(v) (3.2.20)

By using (3.2.17) we find the Einstein-Milne Relation

pν =
4πc2m2v2

h3ν3

g1

g0
F (v) (3.2.21)

We can now enter Equation (3.2.21) in (3.2.13) and we get

ην =
ne
(

m
2πkT

)3/2 exp
(
−mv2

2kT

)
4πv2 ·

n0
ne

“
2g1
g0

”“
h2

2πmkT

”−3/2

exp( hνkT ) exp
“
− 1

2
mv2

kT

”F (v)hαν

m4πc2m2v2

h3ν3
g1

g0
F (v)

(3.2.22)

Simplifying again, gives us Equation (4-101) in Mihalas (1978) - the equation
for the emissivity of recombining electrons

ην =
2hν3

c2
n0ανe

−hν/kT (3.2.23)

We need to transform n0 in the equation above to n1 using the Saha-Equation,
since when all of the plasma is ionised, n0 = 0 and there Equation (3.2.23)
fails. Entering (3.2.12) gives

ην =
2hν3

c2
nen1

(
g0

2g1

)(
h2

2πmkT

)3/2

exp
(
hν

kT

)
exp

(
−

1
2mv

2

kT

)
αν exp

(
− hν
kT

)
(3.2.24)

The term 1
2mv

2 is the kinetic energy, and is thus the difference in energy be-
tween the ionisation frequency and the frequency of the photonEkin = 1

2mv
2 =

h (ν − ν0). With this we get the spectrum of the diffuse emission as in Ciardi
et al. (2001) Equation (16)

ην =
2hν3

c2

1
2
g0

g1

(
h2

2πmpkTe

)3/2

ανe
−h(ν−ν0)/(kTe)nen1 (3.2.25)

which is proportional to

ην ∝ ν3ανe
−4.8×10−11·ν/T (3.2.26)

This formulation will be used when we include the diffuse component in our
code.

3.2.4 Collisional Ionisation

The thermal motion of atoms can lead to spontaneous ionisation due to col-
lisions. Electrons will be removed from a neutral atom due to the coulomb
potential of a bypassing electron or atom. This is the mechanism to free elec-
trons that would be hard to free using radiation only, like in ionised oxygen OVI.
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Collisional ionisation requires high temperatures, otherwise the atom-atom in-
teraction is too weak. For hydrogen, a semi-empirical approximation to the col-
lisional ionisation probability per atom and per unit time P collnk exists (Lequeux
(2005))

P collnk ' 7.8× 10−11T 1/2
e n3e−χnne [s−1] (3.2.27)

where n is the quantum number from where the ionisation starts, k is the con-
tinuum level and χn is the ionisation potential from level n in units of kTe, i.e.
χn = εnion/kTe. For all other species complex calculations need to be per-
formed to derive this quantity and precomputed tabels can be found at the
National Institute of Standards and Technology homepage http://physics.
nist.gov/PhysRefData/Ionization/atom_index.html.

In CRASH, the following collisional ionisation rate for hydrogen is used

γHI (T ) = 5.85× 10−11T 1/2

[
1 +

(
T

105

)1/2
]−1

e−157809.1/T [cm3s−1]

(3.2.28)

3.2.5 Cooling Processes

As can be seen in the rates given above, all the processes discussed (except
the photoionisation cross-section) are temperature dependent. In turn radia-
tive transfer effects influence the temperature of the plasma. For example an
increase of particle density due to ionised electrons (in constant volume) will
adiabatically raise the temperature. Also, depending on the wavelength of the
photons, newly ionised electrons possess kinetic energy, again resulting in
temperature changes.

Other heating and temperature processes exist and we will shortly talk about
each one that was incorporated into our version of CRASH. Effects, that are
not discretely modelled in the code are combined in the so called “cooling
function”. The cooling function describes, how much the temperature changes
due to the combination of certain processes, as a function of temperature and
chemical composition of the plasma. The change in total energy due to differ-
ent processes can be summarised to (Dopita and Sutherland (2003))

Q̇ (ne, Te, ZA) = Q̇line + Q̇coll − Q̇rec − Q̇phot + Q̇Brems ± Q̇Compt. (3.2.29)

The different processes responsible for cooling the gas are collisional excita-
tion cooling in emission lines Q̇line, collisional ionisation cooling Q̇coll, recombi-
nation heating Q̇rec, photoionisation heating Q̇phot, cooling through Bremsstrahlung
Q̇Brems, and heating or cooling through the Compton effect Q̇Compt..

If one assumes, that only the ground state of the ions are populated (this is
true for the low densities in the intergalactic medium), the total energy change
is only dependent on the electron and species density. This is not the case for
Bremsstrahlung cooling. The total energy change can now be written as

Q̇ (ne, Te, ZA) = nenAΛ (Te, ZA) (3.2.30)
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Λ is the so called cooling function, and the cooling rates given below, are part
of this cooling function which is the sum of the different cooling process rates.
In our simulation, the cooling function is thus dependent on T , ne, nHI , and
nHII only, since for simplicity we have not included helium yet.

3.2.5.1 Collisional Ionisation Cooling

When an atom is being ionised through a collision, energy of the projectile will
transfer into the overcoming of the ionisation potential by the ionised electron.
The projectile will loose kinetic energy and thus the temperature decreases.

We use the same cooling rates as given in the original CRASH code

ζHI (T ) = 1.27× 10−21T 1/2

[
1 +

(
T

105

)1/2
]−1

e−157809.1/T [erg cm3s−1]

(3.2.31)

3.2.5.2 Collisional Excitation Cooling

The same mechanism as in collisional ionisation is at work with excitation cool-
ing. The only difference is, that the transferred energy is too low to unbind the
electron. It is just raised to a higher level.

The cooling rate used here is

ψHI (T ) = 7.5×10−19

[
1 +

(
T

105

)1/2
]−1

e−118348/T [erg cm3s−1] (3.2.32)

3.2.5.3 Recombination Cooling

Adiabatic cooling and heating is followed in the code, by considering the changes
in number density appropriately. Adiabatic cooling due to recombining elec-
trons is thus treated through that process. The loss of kinetic energy due to
these recombining electrons is not included in the adiabatic cooling process
and therefore needs to be handled separately.

Therefore the recombination cooling rate

ηHI (T ) = 8.70× 10−27T 1/2

(
T

103

)−0.2
[

1 +
(
T

106

)0.7
]−1

[erg cm3s−1]

(3.2.33)
is implemented.

3.2.5.4 Bremsstrahlung Cooling

While electrons move in a medium, they are constantly being deflected by the
atoms around them. Their kinetic energy is reduced by deceleration in free-
free two-body encounters. Every time the electron is being deflected, some
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kinetic energy is transformed into radiation, called Bremsstrahlung or free-free
emission.

The total energy loss by Bremsstrahlung can be expressed as

β (T ) = 1.42× 10−27T 1/2 (nHII + nHeII + 4nHeIII )ne [erg cm−3s−1]
(3.2.34)

Note, that this is the total energy loss and not a cooling rate.

3.3 Introduction to the Monte-Carlo Method

Monte-Carlo methods can be used, to solve many different kinds of problems.
One possible application has been introduced in Chapter 2. By simulating
processes that are also random in the real world, this method is the most
natural way to deal with such systems. Such systems are often described
through partial differential equations.

The propagation of light can be interpreted as such a stochastic process.
Rays of light are sent out by a source in random direction. These rays propa-
gate until they are absorbed. Absorption is also a probabilistic process, with a
probability of 1 − e−τ (Equation 3.2.4). Electrons recombining with atoms are
also stochastic, best described with recombination probabilities, from which
recombination rates can be derived. When light is being emitted by a recom-
bining electron, the direction of the photon is also random. Since so many
aspects of the processes involved in radiative transfer are stochastic, it is easy
to see that simulating all these processes using stochastic algorithms is feasi-
ble.

In general, differential equations of any type can be solved using Monte-
Carlo algorithms. Sometimes these methods are the only way to handle com-
plex equations. The problem in solving differential equations lie in the integra-
tion procedure. Using a Monte-Carlo scheme, these integrals can be sampled
and an estimate of its values can be determined efficiently. The quality of the
estimate is directly coupled to the number of samples evaluated.

Statistics gives a way, to write integrals as a function of the mean,∫ b

a
f(x)dx = (b− a)f. (3.3.1)

If we find a simple way to approximate the mean f , the integral is solved. This
can be done using a Monte-Carlo method. The function f(x) is evaluated n-
times using random numbers ξn for x with ξn ∈ [a, b]. Then, the mean of all
these samples is calculated. The result 1

n

∑
n f(ξn) is an approximation of the

real mean value f .
To illustrate the idea behind the method, let us look at an example found

in many introductory texts to Monte-Carlo techniques (like Sobol’ (1994) or
Dupree and Fraley (2002)).

It is possible to calculate the value of π using a Monte-Carlo technique. This
might not be the easiest way to do this but serves as a good example. The
area of a circle is A = r2π. We assume r = 1, therefore π = A. We are going
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to pick two uniformly distributed random numbers in the interval 0 < x < 1 and
0 < y < 1. We then check, if the chosen point lies in the circle or not. We
repeat this process n-times and count all the points lying inside of the circle.

This way, we determine the area of the first quadrant, which is just the frac-
tion of the points lying in the circle, compared to the total number of points
A/4 = Ncircle/Ntotal. The ratio is an approximation of the value π/4. This
method is called the rejection-method.

The approximation obtained using this method will increase in precision, if
the sample number is increased. We can understand this by looking at the
estimate of the second central moment which is a measure of the error (also
known as the variance):

σ2 =
1
n

∑
n

(xn − 〈x〉)2 (3.3.2)

The square-root of the second central moment is called the standard deviation
σ, measuring the mean deviation of the total sample points relative to the mean
value. The variance can be reduced in a simple fashion by increasing the
number of samples taken. This will move the mean value nearer to the real
mean value because more sample points will lie nearer to the mean, reducing
the variance.

This sketches the general idea behind Monte-Carlo schemes and the CRASH
code briefly. We will look at some aspects in more details, especially at ways
to reduce the variance in a Monte-Carlo calculation and whether or not they
could be implemented in the CRASH scheme.

3.3.1 Random Numbers / Pseudo Random Numbers

The key to good Monte-Carlo simulations lies in how random numbers are re-
alised. Two kinds of random numbers exist: real and pseudo random numbers.

Real random numbers cannot be generated using a determinative algorithm.
One has to take natural processes, like radioactive decay of atoms, noise in
any analogue to digital converter, or atmospheric noise and convert these to
a random number. Generating real random numbers can be complicated and
require additional apparatus, which is only justifiable for special applications.
On the internet, services exists, where real random numbers are obtainable
using atmospheric noise, but for solving the radiative transfer equation, billions
of numbers are needed at high speed. Using real random numbers is not use-
ful in that case. Further real random numbers are not reproducible, because
they gives a new set of numbers for each run of the simulation. This makes
verification of a code very hard, since errors cannot be reproduced and tracked
down.

Algorithms exist, that can mimic the behaviour and statistical properties of
real random numbers, but unfortunately only to a certain degree and with a cer-
tain periodicity. These so called pseudo random number generators produce
big series of numbers, that start to repeat themselves after a certain period.
One has to be careful, that this does not happen in a Monte-Carlo simulation,
since this will turn the simulation useless.
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To illustrate, how these pseudo random numbers can be found, we will
sketch one of the first algorithms used for this purpose, the mid-square method
developed by John von Neumann.

One takes for example a four digit number ξ0 = 0.1234, and takes the square
ξ2

0 = 0.01522756. From this new number represented by 8 digits after the
decimal point, we take the four digits in the middle ξ1 = 0.5227 and do the same
thing again ξ2

1 = 0.27321529 and so on. It can be shown, that this algorithm
does not produce a good uniform distribution. Further, since this method is
recursive and dependant on the preceding value, it is clear that at one point
the random number will coincide with one already drawn and the series will
be periodic from that point on. For example ξ0 = 0.1000 will only produce 1
different number (ξ2

0 = 0.01000000 with ξ1 = 0.0000)! So, more sophisticated
algorithms are needed and exist.

In our version of CRASH, we used the fast MT19937 Mersenne Twister
pseudo random number generator, developed by Matsumoto and Nishimura
(1998). It has been developed, with Monte-Carlo simulations in mind. The
MT19937 has very desirable properties. It has passed all the statistical tests
to date. A very desirable property of this generator, besides being very fast, is
its extreme periodicity of 219937−1, making it ideal for Monte-Carlo simulations.

Just as a side note: When profiling our code, the random number generator
uses so little time, that it does not even show up and uses at least less than 1%
of the simulation time. Therefore we do not pre-tabulate any randomly derived
quantity.

Since the random number generator produces uniformly distributed number
between 0 and 1, a method to alter the distribution needs to be implemented.

3.3.2 Modelling Probability Distributions

It is very important for processes that are simulated with Monte-Carlo methods
to be calculated with the correct set of random numbers. The sampled process
needs to represent the process in the real world. This can be done, by realising
the probability distribution of the random numbers to correspond to the right
laws. This is called sampling and is needed for a “fair-play” in a simulation.

The easiest way to ensure a “fair-play” is to directly mimic the probability
distribution of the real process. There are situations, where this could be a
problem. Let us consider some spectral distribution, where the probability of
a photon to have a frequency around the ionisation barrier is high, and the
probability of the higher energy photons is low. By directly using this probability
distribution, the frequency around the ionisation barrier is sampled more often,
than the higher energies. Lets pretend, that the higher energy photons have
a bigger impact than all the lower ones. In this case, we will always get many
photons that have no effect, and only a few that really matter to the problem
discussed. To sample these important high energy photons sufficiently, one
would need to choose from an extremely large sample (this is the case in
CRASH at the moment).

There is a solution to this problem. One could sample the unimportant low
energy photons with a lower frequency, than the high energy photons, while
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maintaining a “fair-game” using different weighting methods discussed in the
next chapter. This process is called stratification or biasing and can greatly
reduce the variance of a Monte-Carlo simulation.

We have seen, that it is important, to sample probability distributions cor-
rectly, since not all processes have uniform probability. Before discussing how
this is achieved, we need to define two important quantities.

The probability distribution function PDF has already been introduced. Re-
capitulating, the PDF f(x) gives the probability at every point x that an event
occurs. The PDF f(x) is by definition non-negative f(x) ≥ 0. With this, the
cumulative distribution function F (x) can be defined as

F (x) =
∫ x

−∞
f(t)dt (3.3.3)

By definition the total integral over the cumulative distribution function is unity∫ ∞
−∞

f(t)dt ≡ 1 (3.3.4)

The cumulative distribution function is a function in the interval [0, 1] and can
now be used to map a uniform distribution to any kind of PDF. A uniformly
distributed number is chosen, which corresponds to the value of the cumulative
distribution function

ξ = F (x) =
∫ x

−∞
f(t)dt (3.3.5)

This can now be used to model any kind of PDF.

3.3.2.1 Sampling from the Inverse of the Cumulative Distribution
Function

With the randomly chosen value of the cumulative distribution function, the
corresponding number x can be found using the inverse of Equation (3.3.5).

x = F−1 (ξ) (3.3.6)

If this can be solved (which is seldom the case), then a way to transform a
uniform distribution has been found. If Equation (3.3.6) has no analytical so-
lution or a solution to the problem can only be determined numerically, then
another method needs to be used. But first we will demonstrate this method
by modeling random numbers, that are uniformly distributed on a sphere.

In spherical coordinates on the unit sphere, a infinitesimally small surface
element is

dS = sinϕdϕdψ (3.3.7)

The probability, that a point P belongs to the surface element dS is dS/(4π).
So the probability density is

p (ϕ,ψ) dϕdψ = dS/ (4φ) (3.3.8)
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With (3.3.7) this becomes

p (ϕ,ψ) =
sinϕ
4π

The probability density along each of the two coordinates can be found by
integrating over one of the angles

pψ (ϕ) =
∫ 2π

0
p (ϕ,ψ) dψ =

1
2

sinϕ

pϕ (ψ) =
∫ π

0
p (ϕ,ψ) dϕ =

1
2π

(3.3.9)

We were thus able to decouple the components and it can be seen, that
p (ϕ,ψ) = pψpϕ holds. Now the inverse (3.3.6) can be found for each com-
ponent

ξ = F (ϕ) =
∫ ϕ

0
pψ (t) dt =

1
2

(1− cosϕ)

By solving for ϕ we get
ϕ = arccos (1− 2ξ) (3.3.10)

The inverse cumulative distribution function for the other coordinate is found
analogously

ψ = 2πξ (3.3.11)

3.3.2.2 Rejection Technique

When Equation (3.3.6) has no analytical solution or a solution can only be
determined numerically, then a technique called the rejection technique needs
to be used. The principles of this method were already shortly discussed in
the example where we introduced the Monte-Carlo technique for caclulating π.
Since the cumulative distribution function is the area of the probability function
f(x) from −∞ to x, the area under f(x) can be sampled uniformly.

By randomly selecting a point in the rectangle spanned by a ≤ x ≤ b and
0 ≤ f(x) ≤ M , where M is the maximum value of f(x) in the interval [a, b],
the desired PDF can be modelled. Two uniform random numbers ξ1 and ξ2 are
drawn and then scaled to the size of the rectangle using

y = Mξ1

and
x = a+ (b− a) ξ2

Now we determine whether the point (x, y) lies underneath the function graph
or not. If it is not under the graph, the point is rejected and a new one is chosen.
Else, the value of x is a random number drawn from the corresponding PDF
f(x).

This method is very useful, if the number of rejected points is small. If the
area underneath the function f(x) is small, compared to the chosen sampling
rectangle, then this method will be very slow.
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Some faster methods exist, using intelligent transformation of the PDF into
a form that can be sampled better. One of the first of such transformations
is discussed in Kinderman and Monahan (1977). This method can be used
to accelerate sampling in the generation of blackbody or diffuse photons. At
the moment, other portions of the code require more computer time, so this
method has not yet been implemented and is just given for reference.

3.3.3 Variance and Variance Reduction

The mean or expected value of f(x) is in the case of a continuous distribution
defined as

f̄ =
1

b− a

∫ b

a
f(x)dx (3.3.12)

or for a discrete distribution

〈f〉 =
1
n

∑
n

f(xi) (3.3.13)

Another formulation of the mean will be important in later considerations. The
expected value of a continuous distributed random variable V with the PDF
f(x) is the weighted average of the variable over its PDF

V =
∫ ∞
−∞

V (x)f(x)dx (3.3.14)

The mean deviation of all discrete points from the mean value, i.e. the vari-
ance, is then

σ2 =
1
n

∑
n

(f(xi)− 〈f(x)〉)2 (3.3.15)

which can be used as an error estimate. This quantity is very important in
Monte-Carlo simulations, since we want to determine the expected value of a
process. For this to be accurate, we would like the variance to be as low as
possible.

Therefore ways of reducing the variance, while still enabling a “fair game”, is
very important, since it can increase accuracy, or decrease calculation time for
a given accuracy.

3.3.3.1 Stratified Sampling

The method of stratified sampling has been mentioned quickly in the introduc-
tion. The idea is, to undersample regions of the PDF with higher probability
than regions with lower probability. Each region or stratum is then sampled
separately. This could be used in CRASH to undersample photons near the
ionisation edge as compared with higher energy photons.

For each stratum a specific density function f1, f2, . . . is chosen, so that
Vi(x)fi(x) is identical to the problem being evaluated. In the example given
in Dupree and Fraley (2002), stratification increased the accuracy by more
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than a magnitude. Stratification always reduces the variance if the number of
samples in each stratum is proportional to the stratum size. The proof is given
in the book mentioned above.

3.3.3.2 Biased Sampling

By looking at Equation (3.3.14), it can be easily seen, that choosing V (x) and
f(x) intelligently, the “trivial” uniform integrand can be reproduced. These alter-
native formulations of the PDF and random variable not only solve the problem,
but reduce the variance as well.

Let us suppose the expected value of V , V , is given by

V =
∫
R
V (x)f(x)dx (3.3.16)

It is possible to find a different PDF g(x) with g(x) > 0, so that

V =
∫
R

V (x)f(x)
g(x)

g(x)dx (3.3.17)

The new random variable assigned to the new PDF g(x) is thus

V ′ =
V (x)f(x)
g(x)

(3.3.18)

with V = V ′. The variance of V ′ can differ from V and by selecting g(x)
cleverly, the variance can be reduced. This method is called biasing. In the
example given in Dupree and Fraley (2002), biasing increased the accuracy by
a factor of 10. Combining biasing and stratification is also possible.

Work discussing these methods in the context of radiative transfer are (Ju-
vela (2005)) and (Jonsson (2006)). The later work resulted in a polychromatic
Monte-Carlo scheme. On how these methods can be included in CRASH will
be part of further investigation. At the moment we restrict ourselves to the
original CRASH scheme. Investigations whether and how the discussed tech-
niques can be implemented in CRASH will be work to come.

3.4 The CRASH Radiative Transfer Scheme

The general idea behind CRASH is simple. Given a source and an initial den-
sity field, photon packages are sent out at random by each source. Since it
is impossible to follow every photon produced by the source, they are com-
bined into bigger entities called photon packages. Each package contains the
number of photons produced by the source during a time step.

These photon packages are sent out by the source in random directions.
The angular distribution can be easily controlled and modified. Distributions
like homogeneous ones or beams of light are possible. The total number of
packages produced by the source determines the angular sampling resolution.
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Due to the limited number of photon packages, this quantity is relatively low
and a high number of packages need to be realised.

Each photon package represents a monochromatic beam of light. The fre-
quency of the package needs to be determined using the appropriate spectrum
of the source. Again, this is done probabilisticly by sampling the spectrum ran-
domly. Algorithms on polychromatic package propagation exist but have only
been used in galactic settings (see Jonsson (2006)). Plans to include this
technique in our code exist but are out of the scope of this master thesis.

Each photon package is then propagated at the speed of light through the
simulation box. The amount of absorption is calculated each time a package
crosses a cell and is subtracted from the propagating package. Are the number
of photons in the package below a certain limit, then the package is viewed as
absorbed and is not followed any further.

The CRASH code is also able to include a diffuse radiation field produced by
recombining photons. When a cell is crossed by a package, all the electrons
recombining in the cell will be counted and saved. If a certain level of recombi-
nations has been reached, a photon package is being released from the cell in
a random direction and the number of recombined electrons in this cell is set
to zero.

This gives a short overview of the CRASH scheme. Details will be discussed
below, where we will also show how we implemented each step. When refer-
ring to our implementation of CRASH, we will use our working name ACRASH
(Adrian CRASH) from now on. ACRASH solves all the physics in comoving
coordinates. All the atomic data must be transformed with the scale factor
a(z) = 1/(1 + z).

3.4.1 Package Creation

The main idea behind Monte-Carlo radiative transfer schemes are photon pack-
ages. It is very important to note, that these photon packages do not resemble
real photons. They resemble a collection of many photons to one package,
i.e. a photon packages combines the energy of many photons into one photon
energy package.

Our version of CRASH can handle three different kinds of packages. “Nor-
mal” photon packages produced by a source, like a star or a galaxy, back-
ground field packages and photons produced by a diffuse component, like
photons stemming from recombining electrons.

3.4.1.1 Normal Package

ACRASH can produce standard photon packages in three different ways. The
easiest realisation of a photon package is produced by a monochromatic source.
Additionally ACRASH is able to handle black body sources and sources with
any given spectral form.

Since photon packages resemble energy packages, the energy of a package
is one of the main parameters. Given a time step ti = i ·∆t and a bolometric
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luminosity Ls(t) the energy in a package is

∆Ei =
∫ ti

ti−1

Ls(t)dt (3.4.1)

The way a time step is chosen in CRASH is given by the total simulated time
ts and the number of photon packages used Np. The time step is thus

∆t = ts/Np (3.4.2)

In ACRASH we have created the possibility to loosen the time step criteria to

∆tACRASH = Nt ·∆t (3.4.3)

where Nt describes the number of photons produced in each time step per
source. We therefore do not limit the package production to one package per
time step per source which has considerable benefits to the performance of our
code, especially in the OpenMP parallel version. The total energy produced
by the source in one timestep ∆tACRASH is then distributed equally to the Nt

photon packages.
The next important quantity of a package is its frequency ν. The frequency

is determined by sampling the source spectrum Sν . In the case of a black
body spectrum, or an unspecific spectrum given by an input file, we sample
the spectrum using the rejection method. The spectra are sampled above the
ionisation threshold 13.6 eV only. For a monochromatic source, we do not need
to sample any spectrum and just assign the monochromatic frequency to the
package.

Using the frequency ν we can now determine the number of photons in the
package. We do not use the energy as a parameter. Instead the number of
photons in a package is used. The number of photons in the package is now

Nγ,i =
∆Ei
hν

(3.4.4)

where h is the Plank constant.
In ACRASH we do not use the total number of photons in a package as a

variable, since the numbers are too big. We will see, that it makes sense, to
use

Ñγ,i =
Nγ,i

(∆x)3 (3.4.5)

where ∆x is the size of one cell. This transforms the package energy content
into the units of energy density.

The origin of the photon package is given by the source location. The direc-
tion in which the package is being propagated is determined by choosing the
two angles ϕ and ψ using the scheme described in Chapter 3.3.2.1.

A photon package is determined by the following 8 variables: the origin ~P ,
the direction ~D, the frequency ν and the number of photons in the package
Nγ,i.
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3.4.1.2 Background Field Package

A background radiation field can be implemented similarly to a normal source.
However it is not that straightforward as one might think in the beginning. Two
different implementations have been proposed in the literature. One is to let
photon packages be created at the faces of the simulation box and then let
them propagate into the box.

Another more sophisticated approach was proposed by Maselli and Ferrara
(2005). They proposed to randomly choose a cell in the box where a back-
ground radiation photon is produced isotropically. This is coupled to a density
threshold, since it is not initially certain that cells with high densities are ex-
posed to the background radiation. The energy of the background field could
be too weak to penetrate into these high density regions and they could be
shielded. When implementing the background field in ACRASH we used the
first method in the begining but had change for a compromise between the two.
The reason for this is to ensure homogeneous sampling of the box.

It is not trivial to assign the energy content to a background photon package.
Simply transforming the background flux J912 into energy is too naive, since
this only resembles the amount of energy deposited in a cell. In reality the
photon package has more energy and only J912 is deposited in a cell. To
be able to propagate background packages in the CRASH way, Maselli and
Ferrara (2005) proposed the following:

Starting from the ionisation equilibrium in its discrete form

∆nHII = ΓHInHI∆t (3.4.6)

where ΓHI is the ionisation rate, we can say that the amount of absorbed
photons in a cell correspond to

∆nHII =
Nγ

(
1− e−∆τ

)
∆x3

(3.4.7)

This transforms Equation (3.4.6) into

ΓHInHI∆t∆x3 = Nγ

(
1− e−∆τ

)
(3.4.8)

For the optical thin case ∆τ � 1 we can write
(
1− e−∆τ

)
≈ ∆τ . In Equation

(3.2.3) we have seen that ∆τ = σHInHI∆x, where σHI is the photoionisation
cross-section of hydrogen. With this we can find an expression for the total
photon content of the package

Nγ =
ΓHI∆t∆x2

σHI
(3.4.9)

or in the case of the comoving coordinates in ACRASH

Nγ =
ΓHI∆t∆x2 · a(z)2

σHI
(3.4.10)

This is the photon package content arriving at one cell. Firstly we have chosen
to let background packages emerge from the sides, we need to multiply Equa-
tion (3.4.9) with N2

cells to get the amount of photons passing through one side
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Figure 3.4.1: Schematic drawing of background photon propagation in one di-
mension only. A random starting point is chosen. Then the back-
ground package is propagated using periodic boundary condi-
tions out of the box, and back in at the other side for one box
length.

of the simulation box. Equation (3.4.9) is further converted into our chosen
units for the package energy Ñγ .

It must be cautioned, that the parameter fl for the mean cell crossing length
(see Equation 3.4.16) needs to be changed to fl = 1.0 when propagating
photons perpendicular to the box border. This is to prevent systematic under-
estimation of the energy content deposited in the cell. Since packages now
have preferred directions, the original value of fl = 0.56 in the CRASH scheme
cannot be used and the mean cell crossing length changes.

As mentioned before, we experienced some issues with letting the back-
ground radiation simply emerge from the sides. The core cells in the middle of
the box will have a systematically reduced energy deposit by background pho-
tons than cells near the border. This is problematic, so we decided to choose a
different scheme. As in Maselli and Ferrara (2005), we start by determining a
random cell in the box as the origin of a background photon. The density of the
origin cell is checked and if the density is higher than a certain threshold δBG
(we chose δBG = 1), a new cell is randomly picked. Now instead of randomly
determining a direction for the photon, a direction perpendicular to one of the
box faces is chosen randomly.

Then, the background package is propagated using periodic boundary con-
ditions, but only for the length of one box length. A schematic illustration of this
procedure is found in Figure 3.4.1. This ensures homogenic sampling of the
background radiation.

3.4.1.3 Diffuse Component Package

The spectrum produced by recombining electrons has already been discussed.
The technical implementation of this diffuse component is also quite straight
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forward. The diffuse component of recombining electrons is isotropic, but the
scheme easily allows for non isotropic components as well.

To determine the frequency of the monochromatic diffuse photon package,
Equation (3.2.25) is sampled using the rejection technique. This assumes,
that all recombination events occur to the same atomic level and that all re-
combining electrons possessed the same kinetic energy. The only problem
is to determine the energy content of the package and how and when diffuse
photon packages are produced.

For this, an additional variable for the physical properties is saved in the grid.
For each cell, the number of recombinations in each cell is saved. For a time
interval ∆t the number of recombinations are

∆Nrec ' α (Ti−1)ne,i−1nHI,i−1∆t∆x3 (3.4.11)

or in comoving coordinates

∆Nrec '
α (Ti−1)
a(z)3

ne,i−1nHI,i−1∆t∆x3 (3.4.12)

where the index i− 1 indicates, that these variables are evaluated for the time
ti−1. ∆Nrec is added to the total recombination events counted for each cell
Nrec,c at coordinates c = (x, y, z) every time a photon package crosses a cell
(we have chosen Nrec,c/∆x3 as units).

A photon package is produced by a cell, when a certain fraction from the
total atom number in the cell has recombined.

Nrec,c > frNa (3.4.13)

Here Na is the total number atoms in a cell. After a cell produced a diffuse
photon, Nrec,c is set to zero.

Since α (Ti−1) captures all recombining electrons, including the ones to dif-
ferent energy levels, we need to determine the fraction of photons stemming
from direct recombination to the ground level. Two possible recombination al-
gorithms have been implemented in ACRASH. The original one of CRASH
proposes sampling the fraction of αHI,1/αHI , where αHI,1 is the direct recom-
bination probability to the first level. A random number is chosen and if this
number is smaller than αHI,1/αHI , a photon package is released. This could
bias the diffuse component, since many relevant photons are ommited, espe-
cially when the fraction is very low, but the number of reemitted photons is high.
ACRASH therefore implements a second method, where a photon package is
produced at each recombination event (3.4.13), but the number of photons in
the package is reduced accordingly to the fraction αHI,1/αHI . This results in
more photon packages and can increase calculation time greatly, but samples
the diffuse component better.

It is noted that in ACRASH, only the production of recombining photon pack-
ages is treated discretely. The treatment of recombination in solving the rate
equations is continuous. If recombination is also treated discretely in the chem-
istry solver, adiabatic cooling would be over estimated.
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3.4.2 Package Propagation

As has been mentioned, photon packages are produced in a Monte-Carlo fash-
ion. Each type of source will produce a certain number of photon packages
per time step. For this, the spectral energy distribution function and the an-
gular distribution of each source is sampled. We now want to discuss, how
photon packages are treated further in the integration process. Once they are
produced by the source, they will be propagated through the simulation box at
the speed of light. This is a major difference to the original CRASH scheme
and whether this has an effect on the solution or not will be investigated.

The direction ~D with which the packages are propagated is known, after they
habe been created. The equation of a straigt line is then used to determine the
current position of the package. Instead of evaluating the equation of a straigt
line each time a package is processed, we simply advance the package by the
direction vector ~D which has the length of one step-length fl∆x. The factor fl
determines how big a step is and will gain a more important meaning later.

We then calculate the cycle time, when the photon package arrives at the
next step along its ray. This is when the time for the package to travel the
distance fl∆x at the speed of light passed. In CRASH, this is omitted and
the package is propagated along its ray until it leaves the box or is absorbed,
without considering the propagation time. This corresponds to an infinite speed
of light.

It is possible, that the photon package has not travelled out of the cell it was
in. If this happens, we should not sample the same cell again and we just
advance the package without depositing any photons and without solving the
chemistry again.

Once again, we remind that our photon packages are monochromatic. Be-
cause we are only interested in the ionisation process, photoionisation is the
only process affecting a package. The opacity contribution of the current cell
needs to be determined and the energy content (i.e. the number of photons)
of the package reduced accordingly. The absorption probability at the current
cell with the discrete optical depth ∆τ l is then

P (τ) = 1− e−∆τ l (3.4.14)

The contribution ∆τ l of the l-th cell to the total optical depth along the ray is in
case of hydrogen only

∆τ l = σH0(ν)nlHIfl∆x (3.4.15)

or in the comoving case

∆τ l =
σH0(ν)
a(z)2

nlHIfl∆x (3.4.16)

where σH0(ν) is the neutral hydrogen photoionisation cross-section, nlH0 is the
neutral hydrogen number density in the cell and fl∆x is the mean crossing
path of a ray through a cell with the size ∆x. CRASH uses the mean crossing
path through a cell instead of the real crossing path and ACRASH adopts the
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same strategy. fl is determined through randomly intersecting rays through a
box and has the value fl = 0.56.

In the course of testing our code, we have realised, that this strategy is not
as good as it might seem. Artifacts are introduced due to over- and underes-
timating the optical depth in certain cells. In the case of a point source, cells
where the absorption is systematically underestimated are the ones parallel
and diagonal to the box edges. The problem of underestimation was severe in
our treatment of background radiation photons. In this special case fl should
be unity, since packages are propagated parallel to the box faces. In future ver-
sions of our code, we will therefore determine the correct intersection length of
the ray using fast methods used in computer graphics (Amanatides and Woo
(1987)).

To determine how many photons are absorbed in a cell N l
A we use

N l
A = N l

γ

(
1− e−∆τ l

)
(3.4.17)

where N l
γ is the number of photons still remaining in the package after propa-

gating up to the l-th cell. N l
A is then subtracted from the photon package and

is propagated further along the ray

N l+1
γ = N l

γ −N l
A (3.4.18)

Sometimes it can occur, thatN l
A is bigger than the number of remaining neutral

atoms N l
ion in a cell. This needs to be checked and if true, N l

A = N l
ion. Of

course, the exceeding number of photons remains in the package.
The package is followed until it exits the box (open boundary conditions) or

is considered extinct. This is the case when N l
γ < 10−pNγ where Nγ was

the original amount of photons at creation time. Energy is conserved to an
equivalent accuracy of 10−p. In (Maselli et al. (2003)) they adopted p ∈ [4, 9]
where for our calculations presented here we constantly used p = 8.

3.4.3 Solving for the Chemistry

Now that the number of absorbed photons is know, physical quantities need
to be updated. Using this information, the rate equations of the gas and the
temperature equation can be solved. In the present version of ACRASH, the
system of equations to be evaluated is simple, i.e. one equation for the ionisa-
tion fraction xHII = nHII/nH and one for the temperature T .

The system of coupled ordinary differential equations is thus

nH
dxHII
dt

= γHI(T )nHIne − αHII(T )nHIIne + ΓHInHI = IHII (3.4.19)

dT

dt
=

2
3kBntot

kBT dntot
dt

+
∑
A,B

H(T, xA,B)−
∑
A,B

Λ(T, xA,B)

 (3.4.20)

The first equation gives the evolution of the ionisation fraction of hydrogen. Dif-
ferent mechanisms need to be accounted for. The first term on the right hand
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side gives the contribution to ionised hydrogen by collisional ionisation. The
second term describes recombination and the third considers photoionisation.
Equation (3.4.20) gives the temperature evolution representing the equation
ensuring energy conservation. Here kB is the Boltzmann constant, ntot is the
total atom number density, H(T, xA,B) the heating function for species A ioni-
sation state B and Λ(T, xA,B) the cooling function. All the contributions to the
heating and cooling term from all species need to be accounted for. Equations
(3.4.19) and (3.4.20) are general equations and need to be discretized. To
include more species, analogue equations to (3.4.19) have to be added to the
system.

The discretisation process in general is straight forward

xHII(t+ ∆t) = xHII(t) + IHII(t)∆t/nH
T (t+ ∆t) = T (t)+

+
2

3kBntot

kBT∆ntot + ∆t

∑
A,B

H(T, xA,B)−
∑
A,B

Λ(T, xA,B)




(3.4.21)

where ∆ntot = ntot(t+∆t)−ntot(t). This system is solved every time a photon
package crosses a cell. All the rates need to be transformed to comoving
coordinates accordingly.

A difficulty of equation (3.4.21) and the CRASH scheme is ∆t. The time
between two crossings of the same cell by two photons varies from cell to cell
due to stochasticity. A scheme which would fix ∆t for every cell, would be
the normal ray-tracing scheme. If ∆t is fixed, each cell must be reached by
a photon in every time-step. In CRASH the idea is to minimize the amount of
ray-tracing needed, which is done through the Monte-Carlo scheme.

To determine ∆t in CRASH for each cell, a new grid is allocated in mem-
ory, where the integer cycle number is stored in the cell, every time a photon
passes through it. The time difference can then be easily computed by deter-
mining the difference between the current cycle number and the last passage
∆t = [jcurr − jlast(x, y, z)] dt. jcurr is the current cycle number, jlast the one of
the last passage through the cell and dt is the physical time step.

As pointed out in Maselli et al. (2003), it is not straightforward to recover
continuous quantities that directly depend on its intensity, since the radiation
field is discretized in photon packages. These quantities are photoionisation
and photoheating rates. Photoionisation rates are easy to determine, since
they are direct proportional to the number of photons absorbed in one cell. For
species A in its neutral state BI the change in ionisation fraction would be

∆xA =
nA,BI
nA

ΓAI∆t ≡
N l
A,BI

N l
A

(3.4.22)

where nA,BI is the neutral (ground) species number density, nA the total num-
ber density of the species, ΓA,BI the photoionisation rate of neutral (ground)
species. N l

A gives the atom number of species A in the cell and N l
A,BI gives
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the number of photons absorbed in the cell due to the neutral (ground) species
BI.

Since only opacity contributions of each species in the cell and the total num-
ber of absorbed photons are passed to the chemistry solver, the contribution
N l
A,BI needs to be expressed through the absorption probability 1 − e−∆τ lA .

With this in mind (3.4.22) becomes for species Ai in state B

∆xAi,B =
N l
Ai,B

nlAi,B(∆x)3

 1− e−∆τ lAi,BI∑
A,B

(
1− e−∆τ lA,B

)
 (3.4.23)

where ∆x is the cell size, and
∑

A,B

(
1− e−∆τ lA,B

)
is the sum of all absorption

probabilities from all species A and states B in the simulation.
The discrete contributions to photoheating are adiabatic heating due to the

increase in total number density at constant pressure and volume, and the
energy deposit due to the ionised electron’s remaining energy. With these two
effects in mind, the discretised contribution to the temperature is given by

∆T =
2

3kBntot

kBT∆ntot +
∑
A,B

[
nlA,B (hν − hνth,A,B)

] (3.4.24)

where nlA,B is the photon energy density nlA,B = N l
A,B/ (∆x)3 of species A in

state B, ν is the current wavelength of the photon package, and νth,A,B is the
ionisation threshold wavelength.

All the other contributions like recombinations, collisional ionisations and
cooling are treated as continuous processes. This can cause problems with
the time stepping, since continuous processes need smaller time steps, than
the actual time step of the discretised components. Therefore it is essential to
check, if ∆t in the cell is smaller or bigger than the smallest characteristic time-
scale of the continuous processes, i.e. ∆t� tmin = min [trec,B, tcoll,A, tcool].

If this condition is not met for the current cell, then the integration process of
the chemical equations needs to be reduced to ns sub-cycles with

ns = int
[

∆t
fstmin

]
(3.4.25)

where fs is the so called fudge factor. This factor is given as fs = 50− 100 by
Maselli et al. (2003). We went for fs = 10 for all the work presented here, since
we found this to be reasonable accurate.

3.4.4 Time Stepping and Errors

In the section above, we mentioned that time stepping can be very important
in reaching the desired accuracy, since continuous processes are intertwined
with discretised processes.

It is very hard to sample the total 7D parameter space of the radiative transfer
equation equally well in each parameter. The sampling is controlled through
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the number of photon packages chosen. Since with each photon package
many different dimensions of the parameter space are sampled simultane-
ously, the overall sampling is quite poor. With each package, the frequency
space and the angular parameter of the source is sampled. Then, through
propagating the packages through the simulation box, the spatial parameters
are sampled. But sampling is not constant, it is proportional to the distance
from the source. Cells nearer to the source will have a higher probability to be
hit by a photon package than cells further away.

All these effects make time stepping for the CRASH scheme hard. In the
current version of ACRASH, the only parameter governing the sampling reso-
lution is the number of photons and number of time steps. No care is taken,
whether the amount of photons is sufficient for a simulation or not. Further the
code does not check, if the conditions for good sampling presented below are
maintained at all times. Further versions of the code will be able to do this, but
at the moment it was crucial that total control over execution time was present,
and that we were able to study resolution effects in more detail.

The sampling resolution of the CRASH scheme depends on the following
input parameters: Np the number of photon packages emitted per source, N3

c

the number of grid cells and Ns the number of sources in the simulation. With
these parameter, a simple resolution criteria can be derived, as has been done
for the original CRASH scheme.

To determine how well the problem is sampled, one can calculate the mean
number of times a cell is crossed by photon packages. For this the total number
of packages in the simulation NsNp is taken. Now we determine how many
cells are crossed on average by one package fdNc where fd is fd ≈ 1 for
optically thin media and fd ≈ N−1

c for optically thick media. It is therefore
between fd =

[
N−1
c , 1

]
. The number of crossings is thus

Ncr =
NsNpfdNc

N3
c

= fd
NsNp

N2
c

(3.4.26)

This can now be coupled to a time step criteria. To properly account for
all continuous processes, the minimum time-scale in the simulation box tmin
needs to be determined. For this, mean values of the recombination, col-
lisional ionisation, and cooling time-scale are determined. We set tmin =
min [trec,B, tcoll,A, tcool] and

〈∆t〉 =
ts
Ncr
� tmin (3.4.27)

must hold. With this, the number of crossings need to be

Ncr = fd
NsNp

N2
c

� ts
tmin

(3.4.28)

This criterium has to be met at all times during the simulation, and the time
step should be adjusted accordingly if it is not fulfilled. ACRASH is not able to
do so at the moment, but later version of the code will.

Another important parameter is the fraction of atoms that in one cell could
be ionised by a photon package Nγ/Na. The lower this factor is, the higher
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the resolution. This would make photoionisation and photoheating processes
more continuous.

A rough estimate for the compuational cost of the CRASH scheme is given
through the total number of photons that need to be evaluated, i.e. N3

cNcr =
fdNcNpNs. But in reality this is only valid, if recombination processes are
excluded.
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3.5 Flowcharts

Red colour symbolises program parts not yet implemented.
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4 Testing the Code

4.1 Isothermal Strömgren Sphere Test

A basic test for any continuum transfer code is the Strömgren sphere test. This
is one of the few cases, where an analytical solution is available. For this test,
numerous approximations are made. The test is carried out in homogeneous
hydrogen gas, using a monochromatic source with constant flux at its center.
The HII region then expands in this medium without depositing any thermal
energy (isothermal approximation).

The Strömgren sphere will grow until an equilibrium between ionisation and
recombination is reached. The radius of this sphere is called the Strömgren
radius RS

RS = 3

√
3

4π
Ṅγ

n2
HαHI,B

(4.1.1)

where Ṅγ is the photon number flux and αHI,B is the hydrogen recombination
coefficient to all levels excluding events to the first αHI,B = αHI − αHI,1 ≈ 3×
10−13cm3s−1 (Shu (1991)). The approximation of the Strömgren sphere uses
the on-the-spot approximation. This should be kept in mind when comparing
our results with the analytic solution. The evolution in time is given by (Spitzer
(1998))

Ra(t) = RS
(
1− e−nHαBt

)1/3 (4.1.2)

In a cosmological context, the Strömgren radius needs to be multiplied by the
scale factor a(z) = 1/(1 + z) and becomes RS,co(z) = RS · a(z) (Shapiro and
Giroux (1987)). This is for comoving coordinates. Since in ACRASH comoving
coordinates are used, all distances below are given in comoving coordinates.

In our test runs, we used the setup proposed in Maselli et al. (2003). The
Strömgren sphere should form in a homogeneous medium with nH = 1cm−3

at a fixed temperature of T = 104K. The initial ionisation fraction was set at
XHI = 1.2 × 10−3. For redshift z = 0 a box with Lbox = 70pc and N3

c = 1283

grid cells is used. For the tests at other redshifts, the box size is scaled with
the scale length a(z) to ensure similar spatial resolution. We let the simulation
run for about five recombination time-scales.

The monochromatic source emits photons at 13.6 eV with a photon rate of
Ṅγ = 1048s−1. It is located at the center of the box. For redshift z = 0 we run
this test with and without recombination scattering to see, if its implementation
is correct. Further the redshift zero run has been used to identify effects of the
fr parameter, regulating the production of diffuse photons. A comprehensive
resolution study has been carried out. Possible effects of our time step criteria
are studied as well. Then we checked the cosmological implementation with
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Redshift Scattering Box size [pc] Simulation time [yr]
z = 0 d = 70.0 tsim = 6.0× 105

z = 0 x d = 70.0 tsim = 6.0× 105

z = 3 x d = 16.0 tsim = 1.0× 105

z = 6 x d = 10.0 tsim = 1.0× 104

Table 4.1: Simulation parameters for the Strömgren sphere test. A monochro-
matic source with Ṅγ = 1048s−1 and λ = 912 Å has been used.
The initial density was nH = 1.0 cm−3 comoving for each redshift.
The initial ionisation fraction was set at XHI = 1.2 × 10−3 at a con-
stant temperature of T = 104 K. The grid resolution was 1283 and
the box-size was chosen to result in similar numerical resolution for
each redshift. A scattering parameter fr = 0.1 has been used.

runs for redshift z = 3 and z = 6. A summary of all test runs is found in Table
4.1.

To derive quantities that are comparable to the analytical solution (i.e. the
Strömgren radius), we adapted the method proposed in Maselli et al. (2003).
The radius is derived from the total volume of the ionised region using

Rn = 3

√
3

4π
Vn (4.1.3)

where Vn is the volume of the sphere. The volume is measured using

Vn =
∑

ix,iy,iz

xHII (∆x)3 (4.1.4)

4.1.1 Without a Diffuse Component

The first test performed was the Strömgren sphere test without recombination
scattering, to see, if scattering is implemented reasonably and to see, if the
implementation of the source and propagation of photon packages work well.
The tests were carried out using Np = 106, 107, 108 photon packages. The
results are then compared to the analytical result (Figure 4.1.1).

As is seen in Figure 4.1.1, the solution converges with Np = 107 which
corresponds to Ncr = 5 crossings of one cell. The sampling criteria for this
simulation is Np = Ncr×2×106. It is therefore not surprising, that convergence
is not yet reached for Np = 106.

It is interesting, that the solution without scattering differs by about 10% to
the analytical solution. This means, that in reality a diffuse component greatly
influences the Strömgren sphere and is needed to reproduce HII regions prop-
erly. Of course it can be argued that this is not necessary, since the on-the-spot
approximation can be used. As has been discussed in Ritzerveld (2005) this is
problematic, since large parts of a HII region are dominated by a diffuse com-
ponent, for example the outer parts of the HII region. He shows, that the outer
12% of the region is dominated by this diffuse component, comparing well with
our results, where the region is 10% too small.
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Figure 4.1.1: Evolution of the Strömgren sphere test without a diffuse compo-
nent. The results of our simulations are compared to the analyti-
cal result (thick black line). Different resolutions have been used.
The bottom plot gives the percental deviation from the analytical
result.

4.1.2 With a Diffuse Component

As has been seen above, the correct Strömgren radius cannot be reached
without a diffuse component. It is thus very important in the formation of HII
regions. In order to correctly simulate this diffuse component, the simulation
parameter fr regulating the sampling of the diffuse field needs to be assessed.

We conducted the Strömgren sphere test with sufficient photon packages
(Np = 108) to see, how this parameter effects the overall solution. We com-
pare test runs for fr = 0.30, 0.20, 0.10, 0.05, 0.01 and compared the resulting
Strömgren radius with the analytic solution. Results are shown in Figure 4.1.2.

It can be seen, that including the diffuse component, the Strömgren radius
is reproduced up to 1%. The influence of fr can be clearly seen. If sampling
of the diffuse component is too low, the Strömgren sphere does not evolve
smoothly, as is visible in the wiggles of fr = 0.3 and fr = 0.2 in Figure 4.1.2.
For lower values, the evolution is smooth and seems to converge. The solu-
tions of fr = 0.05 and fr = 0.01 only differ by some tenth of a percent.

A note on the solution of fr = 0.20 should be added. At t = 5 × 106 yr a
sudden rise is present. This is due to the low resolution sampling of the diffuse
component. Cells in the simulation need to wait until 20% of its content have
recombined before a package is sent out. This will lead to a retardation of
the influential effect and if fr is too high, a big quantity of cells will suddenly
trigger photon production. This leads to an artificially high photon flux which is
responsible for the sudden expansion of the sphere. The same would probably
happen, if the simulation for fr = 0.3 would have been run longer. This effect
is smeared out for lower values.

We can confirm the claim in Maselli et al. (2003), that a value of fr = 0.1 is
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a reasonable compromise between accuracy and performance. In the Ström-
gren tests presented below, this value has been used. In our production runs,
we have used fr = 0.01 to be sure that the diffuse component is sampled
correctly.

We have seen, that the diffuse component plays an important role in repro-
ducing HII regions correctly. Thus we cannot ignore recombination, at least in
the context of the CRASH scheme. The effect is quite important and further
attention on how the diffuse component is treated needs to be given in the
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Figure 4.1.2: The influence of fr on the evolution of the Strömgren radius with
Np = 108. Different values have been examined. The results are
compared to the analytical solution.
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Figure 4.1.3: Evolution of the Strömgren sphere test with a diffuse component
at z = 0. The results of our simulations are compared to the
analytical result (thick black line). Different resolutions have been
studied. The bottom panel gives the percental deviation from the
analytical result.
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future.
To test the resolution criteria and see, if convergence is reached, we con-

ducted runs with Np = 106, 107, 108, 109 for redshift z = 0. The Np = 109 run
had to be aborted, since it used too much memory (over 32GB). This run can
only be carried out, if propagation at the speed of light is disabled. Then photon
packages need not to be stored in memory from each time step to the next and
memory consumption drops to 50MB. This is one of the extreme drawbacks of
the speed of light implementation in ACRASH.

The results are shown in Figure 4.1.3. As in the test without the diffuse
component, convergence is reached at around Np = 107. A higher number of
packages increases accuracy only by a slight factor. The difference between
the 108 and 109 runs are barely seen. The Strömgren radius can thus be
reproduced with an accuracy of about 2%. This is in accordance with the
CRASH code, as can be seen in Maselli et al. (2003) Figure 3.

The CRASH code, and with this ACRASH as well, can handle ionisation
spheres up to an accuracy of 2%. This is well in the accuracy regions of other
existing codes (see Iliev et al. (2006)).

In Figure 4.1.4 we plot ionisation fraction cuts through the central region of
the Strömgren spheres for all resolution runs. In the low resolution run with
Np = 106 the Monte-Carlo nature of the transport scheme is clearly seen. It is
clear, that in this case sampling is too low to correctly reproduce the Strömgren
sphere. But if one is only roughly interested in the position of the ionisation
front, even a low sampling can produce a reasonable result.

These sampling artifacts disappear with higher package numbers and with
108 packages, a smooth and thin ionisation front can be produced. In the 109

run, the Monte-Carlo nature is completely invisible.
To test our redshift dependency implementation of the radiative transport

problem, we conducted similar Strömgren sphere tests at different redshifts.
The temperature and number densities were kept constant. The box size had
to be adjusted, since the Strömgren radius shrinks in comoving coordinates
with higher redshift. We wanted to keep the spatial resolution as similar as
possible and reduced the box sizes accordingly. The spatial resolutions at
high redshifts are thus comparable to the one at present.

For our redshift tests at z = 3 and z = 6 we obtained good results for
Np = 108 packages. It seems, that convergence is not reached as fast as
with the redshift zero test. This is due to different densities, at higher redshift
density is increasing. Higher densities can reduce the accuracy of the result
and more photon packages are needed. This is best seen in Maselli et al.
(2003) in their Figure 3, where they tested how accurate CRASH is working for
different densities. Accuracy can decrease with higher densities.

The results of the redshift dependant Strömgren sphere tests are shown in
Figures 4.1.5 and 4.1.6. For redshift z = 3, the highest resolution run used too
much memory and had to be aborted.

We then studied if our changed time step criteria 3.4.3 has any influence
on the solution. Three different time steps have been tested. First the case
where one photon is emitted in each time step, then the cases with ten and
one hundred photons per time step. The test has been carried out with 108
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Figure 4.1.4: Visualisation of the central plane of the Strömgren sphere.
Shown is the hydrogen ionisation fraction. The spatial axis are
in parsec scale. From left to right and top to down are runs at
different resolution Np = 106, 107, 108, 109.

photon packages. As can be seen in 4.1.7, the modification of the time step-
ping criteria has no effect on the solution. At least to a factor of one hundred.
It must be noted, that this must not be true in the infinite speed of light case.

4.2 Realistic Strömgren Sphere

The isothermal Strömgren sphere test cannot test CRASH/ACRASH ability to
solve the energy equation. To test photo heating, a realistic Strömgren sphere
needs to be calculated. Unfortunately there is no analytic solution to this test
case.

We therefore compare our result to the well established 1D radiative transfer
code CLOUDY, which is publicly available at www.nublado.org (Ferland et al.
(1998)). We used the latest version of the code to obtain a reference. It must be
noted, that CRASH and CLOUDY differ in many parts. CLOUDY uses complex
models of atoms, instead CRASH/ACRASH uses a simple one level atom with
n = 1 and the continuum n = ∞. The rate equations also differ slightly, which
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Figure 4.1.5: Evolution of the Strömgren sphere test with a diffuse component
at z = 3. The results of our simulations are compared to the
analytical result (thick black line). Different resolutions have been
studied. The bottom panel gives the percental deviation from the
analytical result.
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Figure 4.1.6: Evolution of the Strömgren sphere test with a diffuse component
at z = 6.

is also a source for possible differences.
The HII region is being evolved in homogeneous hydrogen with a number

density of nH = 1cm−3 at an initial temperature of T = 100K. The medium is
totally neutral in the beginning. The box length is set at Lbox = 140 pc with a
resolution of N3

c = 2563. The simulated time is again ts = 6× 105yr.
A black body radiator is used as source with a temperature of T = 60000K

and luminosity of L = 1038erg s−1. The source is located at the center of the
box.

Once again the effects of a diffuse component are investigated. Another
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Figure 4.1.7: Time resolution test, with different time steps. For this test, 108

photon packages have been used. The time steps corresponds
to one, ten, or one hundred photons produced per step.

emphasis is laid on the impact of resolution.
To transform our 3D solution into 1D for comparison with CLOUDY, we cast

rays from the source to each cell on the face of the box extracting values along
it. We then calculated the mean of all these rays and compared this with the
CLOUDY result.

4.2.1 Without Recombination Scattering

In Figure 4.2.1 the resulting temperature and ionisation fraction profiles are
compared to the reference calculation. To see the effects of numerical resolu-
tion, we again performed this test with Np = 106, 107, 108 photon packages.

It is evident, that the 106 simulation provides a wrong result. The peaks in
the solution are due to the noise introduced by the Monte-Carlo method. Since
now a black body spectra is sampled, the energy contents of the packages
can vary drastically. If a high energy photon is produced, it will have a very big
energy content. The energy is even higher if less packages are being used.
This is due to the bigger time step. This gives the high energy tail a bigger
weighting, which is responsible for the very bad result. When including the
energy equation, special care needs to be taken, that the sampling criterion in
equation (3.4.27) is met at all times.

For higher number of photon packages, the solution converges. It is not sur-
prising after our insights gained with the isothermal case, that lack of a diffuse
field hinders the HII region to evolve properly. Again, the diffuse component is
important in correctly replicating HII regions.

A note shall be added on the temperature profile of CLOUDY. As can be
seen in Figure 4.2.1, the CLOUDY ionisation front is not sharp. Maselli et al.
(2003) argue that this feature could result from heat transfer, which is included
in CLOUDY. But the exact origin of this feature is unclear. Effects due to the
boundary conditions are also a possible explanation.
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Figure 4.2.1: Temperature (top) and ionisation fraction (bottom) profiles of the
test HII region in the equilibrium state. The results are compared
to the CLOUDY reference calculation.

4.2.2 With Scattering

When turning the diffuse component on, our results compare favorably to the
reference calculation. Again, the 106 resolution run is too low, but the 107 and
108 runs converge nicely. As can be seen in Figure 4.2.2 the profiles match
quite well with the CLOUDY result. Small differences are present, but these
are probably due to different handling of atomic processes and different rate
equations. The position of the ionisation front deviates by about 10% to the
reference position.

A closer look at the 107 run shows, that the ionisation front produced by that
run is not as sharp, as the one in the 108 run. This can be clearly seen in the
ionisation fraction profile, since it is declining earlier than the 108 run.

In Figure 4.2.3 the mean evolution of all cells d = 40pc away from the source
is shown. Once more, the 106 package run is not reproducing the result well
enough. The other two runs converge nicely. CRASH is performing very well
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Figure 4.2.2: Temperature (top) and ionisation fraction (bottom) profiles of the
test HII region in the equilibrium state. The results are compared
to the CLOUDY reference calculation.

in capturing the sudden step in the ionisation fraction. The transition phase is
very narrow and is almost a step function.

We can conclude, that CRASH/ACRASH is reproducing the evolution and
structure of Strömgren spheres accurately to about 10%.

In Figure 4.2.4 we show cuts through the ionisation fraction and temperature
data cube of the Np = 108 run, our highest resolution run. Since the source is
not monochromatic, the source spectrum needs to be sampled. This sampling
is very poor and imprints into the ionisation and temperature fields. A poly-
chromatic Monte-Carlo transport would reduce this effect drastically, because
one would gain total control over frequency sampling.

Once again we checked, if our time step implementation could be influencing
the solution. Since no analytical solution is available this time, we compared
the ten and one hundred packages per ∆t runs, with the highest time resolution
run. For this test Np = 108 packages have been used. The results are shown
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Figure 4.2.3: Mean evolution of all cells at d = 40pc distance to the source.
The temperature (top) and ionisation fraction evolution is show.
The clear jump in the ionisation fraction shows, that CRASH is
able to reproduce the sharpness of the jump well.

Figure 4.2.4: Visualisation of the central plane of a realistic Strömgren sphere.
Shown are the hydrogen ionisation fraction (left) and temperature
(right) of the HII region. This is the Np = 108 run. The spatial
axis are in parsec scale. The bad Monte-Carlo sampling due to
limitations in sampling the source spectrum are clearly seen.
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in Figure 4.2.5.
Deviations occur way beyond the position of the ionisation front at around 50

pc. This indicates, that scattering photons are penetrating into neutral regions.
These diffuse photons stem from the ionisation front itself, which is consistent
with results by Ritzerveld (2005). We thus conclude, that time resolution only
has a bigger impact on the diffuse component. The error introduced with this
scheme are about 0.5% in temperature and almost 1% in ionisation fraction for
the lowest resolution run.
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Figure 4.2.5: Effects of the time resolution on the final temperature and ionisa-
tion fraction results. Two different time resolutions are compared
to the highest resolution run ∆t = 6 × 10−3yr. The position of
the ionisation front is at about 50 pc, but deviations are visible
beyond this, which is due to scattering photons.

4.2.3 Background Photon Test

To test our implementation of background photons, we developed a special
test case. As has been seen in Chapter 2.3, we found an analytic formulation
to the evolution of the ionisation fraction in one cell. The solution is given in
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Equation (2.3.3). We will use this for testing our implementation.
Equation (2.3.1) is only valid, if the whole cell is drenched in photons, i.e.

if they are not attenuated by the medium in the cell, but still ionise it. We
modified ACRASH accordingly for this test by keeping the number of photons
in a package constant while it propagates through the box.

The idea behind this test is, that we use a box with length Lbox = 5pc and use
different spatial resolutions, to see, whether this has any effect on the result.
A possible source of such an effect is the formulation of the energy content
in a package or how much energy is deposited in a cell. With this, we have
discovered a problem with the CRASH scheme described in Section 3.4.1.2.

The test is carried out at redshift z = 2 for three different overdensities δ =
100, 0,−0.5 in a neutral homogenic medium. The spatial resolution is varied to
contain Nc = 1, 4, 16, 32, 64 cells. A number of Np = 106 photon packages are
used.

To obtain comparable quantities, we calculated the mean ionisation fraction
in the box to compare with the analytic result, which is valid for one cell only.
With this we pretend that the whole box behaves like one cell. The results are
shown in Figure 4.2.6.

In the test runs for δ = 0 and δ = −0.5 ACRASH is able to reproduce the
analytic solution for any number of box divisions. This was only achievable,
after the mean crossing length parameter fl was set to fl = 1.0, which is the
only correct value for our treatment of background photons.

For the δ = 100 test, our result deviates from the analytical solution. The
analytic solution does not include collisional ionisation, which is important at
high densities. We attribute the difference of ACRASH to the analytical solution
to exactly this effect.

As can be seen, our implementation of background photons is robust and
valid. We ensure a homogenic sampling without the need of calibration factors
as is the case in the implementation described in Maselli and Ferrara (2005).
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Figure 4.2.6: Mean time evolution of our box at different spatial resolution for
different overdensities δ = 100 top panel, δ = 0 middle panel,
and δ = −0.5 for the lower panel. The thick black line gives the
analytical result.
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5 Radiative Transfer Effects on the
Ly-α Forest

With ACRASH, we can study radiative transfer effects on the Ly-α forest and
compare the results with the Gnedin model. By mapping our dark matter sim-
ulations to hydrogen density fields using methods described in Chapter 2, it
is possible to apply a background radation field in ACRASH. With this we ob-
tain proper ionisation fractions which can be used for synthesising Ly-α forest
spectra. The temperature field is determined using the effective equation of
state (equation 2.2.2) and is kept constant throughout our calculations.

Different effects not included in the Gnedin model could influence the Ly-
α forest. These are shadowing effects and diffuse recombination radiation
emitted by hydrogen. Using ACRASH it is now possible to check any influence
of all these effects.

Unfortunately we cannot solve the whole 50 Mpc density field, due to re-
striced computational power that was available. ACRASH is not properly par-
allised for this task. For this an MPI version needs to be created. We therefore
restrict our analysis to a 25 Mpc subbox, which might bias our final statistical
analysis of the box. This needs to be kept in mind, when comparing our results
with the ones optained through the Gnedin model.

But before applying ACRASH to the cosmological box, we want to create a
controlled experiment, to see how the Ly-α spectrum is influenced by all these
different effects.

5.1 Numerical Experiment

In order to understand effects on the spectra more clearly, a numerical ex-
periment is conducted. By setting up a simulation box with two thin sheets
resembling two filaments, we can check our method and look for possible de-
viations to the Gnedin model. These two filaments were chosen and placed in
such a way, that the resulting absorption profiles do not blend.

We took a 12.5 Mpc box using N3
c = 1003 cells and filled the box completely

with hydrogen at the mean density δ = 0. Embedded in this homogeneous
medium are two dense layers. They lie parallel to each other and are separated
by 57 cells. One of the layers is 2 cells thick and has an overdensity of δ = 50,
the other is only 1 cell thick with an overdensity of δ = 10. The experiment
setup is sketched in Figure 5.1.1.

Hydrogen densities are then calculated from the overdensities by using Equa-
tion (2.1.11). The temperature field is generated using the effective equation of
state with its parameters given in our models in Table 2.1. We then propagate
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Figure 5.1.1: Detailed sketch of our numerical experiment setup.

a UV background field with ACRASH. The field is parametrised with the values
given in the afore mentioned table.

The simulation is run for ts = 2.5× 108 yrs using Np = 4× 108 photons and
Nt = 2 × 107 time steps. Since numerical noise is always present in Monte-
Carlo simulations, we average the resulting ionisation fractions over many out-
puts at different times of the simulation. Care has been taken, that only snap-
shots where an equilibrium solution has been reached have been used for
averaging. The rate equations used by ACRASH were changed to the ones
included in the Gnedin model (see Hui and Gnedin (1997)).

The ionisation fraction output of the simulation was then entered into the
Gnedin model, replacing its formulation of the ionisation fractions. From these
outputs artificial spectra were created. These are compared to spectra derived
with the Gnedin model using its simple analytic formulation for the ionisation
fractions.

Results for redshifts z = 1.0, 3.0, 4.0 are shown in Figure 5.1.2. It can be
clearly seen, that our code reproduces the Gnedin model correctly. Variations
in the density field at different times due to the Monte-Carlo method are around
0.025 in transmission (the gray area in the plots). Our results show no devia-
tions from the Gnedin model at redshifts z = 1.0 and z = 3.0.

For redshift z = 4.0 transfer effects can be identified. If we assume, that the
mean solution is converging to the correct solution and if we pay no attention
to the Monte-Carlo error, we see an increase in transmission around the high
density peak absorption line. This is due to recombination radiation. The fil-
ament in itself is emitting photons and increases the ionisation fraction in its
surrounding slightly.

To emphasize this finding, control calculations without scattering have been
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Figure 5.1.2: Results of the numerical experiment. Comparing spectras de-
rived using the original Gnedin model (red line) with spectras us-
ing ionisation fraction fields derived with ACRASH (black line).
The gray area around the ACRASH solution gives one sigma
variations due to Monte-Carlo method. Top panel is for redshift
z = 1, middle panel for z = 3, and lower panel for z = 4.
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Figure 5.1.3: Effects of recombination radiation on the spectrum at redshift z =
4.0. The top panel gives the results including recombination, the
panel below without. A clear increase in transmission can be
seen around the big absorption line. The bottom panel gives a
high resolution run with Np = 2× 109 photons. The Monte-Carlo
variance is greatly reduced, but the mean result does not change
greatly, compared to the low resolution run.
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Figure 5.1.4: Optical depths of our numerical experiment at redshift z = 4.9.
Red gives the original Gnedin model, blue our solution without
the diffuse component, and black with the component. The gray
area gives variations in the Monte-Carlo solution at different time
steps.

carried out. We also used a higher photon resolution to verify our claim, that
the mean solution converges to the actual one. In order to increase the photon
number, we had to switch to the original CRASH scheme, where photons are
propagated at an infinite speed of light. This was necessary, because memory
limitations were reached quite fast with higher numbers of photons. Since we
are only interested in the equilibrium solution, the choice of the speed of light
makes no difference, as is seen in Figure 5.1.3.

By comparing results including and excluding recombination radiation, its ef-
fects are clearly seen. The denser filament affects its surroundings more than
the other. This is easily understood, since in a denser ionised medium, more
ionic cores will capture electrons. Therefore dense filaments radiate more dif-
fuse light.

One can now argue, that all these effects are a lot smaller than the actual
errors due to the simulation. We therefore compare the solution excluding the
diffuse component with a high resolution run using Np = 2 × 109 photons.
The higher resolution run confirms the mean solution of the low resolution run
quite well. The result does not differ greatly. Only noise in the mean solution
is reduced a little. Variations due to the Monte-Carlo nature of the simulations
are also lower with higher resolution. We therefore conclude, that the mean
solution of the low resolution run can be trusted well below the error bars and
only noise in the mean result should be used as an estimate for the error of the
solution.

The amount of influence by the diffuse component increases with redshift.
At higher redshift, the medium is denser and recombines more easily. Since at
redshift z = 4.9 we cannot plot transmission anymore (everything is saturated),
we discuss our results in terms of optical depth. Again we compare our results
with and without the diffuse component. Again we can confirm the influence of
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5 Radiative Transfer Effects on the Ly-α Forest

the diffuse component around the high density filament, as is clearly seen in
Figure 5.1.4. The diffuse component reduces the optical depth from 9 to 8.

Concluding we can say, that effects due to the diffuse component can be
seen in our simple experiment. The influence starts to be noticeable at red-
shifts higher than z = 4.0. How greatly the diffuse component affects the Ly-α
forest will be discussed below. In this simple test we could not identify any
shadowing effects.

5.2 Real Box

To see if radiative transfer effects are visible in the Ly-α forest and how these
affect the Ly-α statistics, the Gnedin model is compared with a full radiative
transfer calculation using ACRASH. To do this, the same dark matter densities
as in Chapter 2 were mapped to gas and temperature fields. This is done
identically as in the toy model.

The Gnedin model does not contain radiative transfer effects. They will have
an impact on the resulting spectra. For example shadowing effects increases
optical depths around high density regions by shielding from UV background
flux. Remember that a certain threshold is assumed, below which the UV
background is considered to dominate the medium (it is not shielded). This is
the place where background photons are produced in ACRASH. All areas with
higher densities than the threshold will cast shadows. A threshold of δBG = 1
was used.

Recombination radiation also has an impact near high density regions. Re-
combination events are more probable there and lead to lower optical depths
around regions with high recombination rates.

In order to run our simulation, the original box size of 50 Mpc had to be re-
duced, because the resulting calculation times would have been too high for a
detailed study. A sub box of 25 Mpc was used. To study possible effects intro-
duced by this reduction, a comparison run with the complete box and similar
resolution as the small one was carried out for redshift z = 4. This box took
two weeks to reach the equilibrium solution on four CPUs.

For the small box Np = 2× 109 photon packages have been sampled using
Nt = 1 × 107 time steps over ts = 2.5 × 108 yrs. The original CRASH formu-
lation for recombination scattering has been used with fr = 0.01. We solved
the radiative transfer for redshifts z = 3, 4, 4.9 with and without recombination
radiation. Parameters for the UV background flux and the effective equation of
state can be found in Table 2.1. The rate equations given in Hui and Gnedin
(1997) have been used for all runs.

As above to minimize Monte-Carlo variance in the equilibrium solution, an
average of different snapshots having reached the equilibrium solution were
used. With this, one sigma Monte-Carlo variances were derived using a Pois-
son distribution and are shown as gray areas in all the plots below, as in all the
plots of the toy model.

All the statistical quantities discussed below, are obtained in the same fash-
ion as in Chapter 2.5 by averaging over one hundred different lines of sights.
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5 Radiative Transfer Effects on the Ly-α Forest

5.2.1 Transfer Effects on the Spectra

Analogue to the toy model, mock spectra (black lines in Figure 5.2.1 and 5.2.2)
have been derived from the ionisation fraction fields. They are compared to the
Gnedin model (red). In Figure 5.2.1 small sections of spectras from the redshift
z = 4 simulation are shown. The upper plot gives results for the run including
a diffuse component, the lower for the one without. In Figure 5.2.2 we plotted
a sample from the redshift z = 4.9 run.

First of all, we can confirm the Gnedin model with ACRASH. We can re-
produce the overall shape of the model spectra. Deviations are present and
by looking at the lower panel of Figure 5.2.1 and 5.2.2, the effect of shadow-
ing can be clearly seen. These spectras were calculated without the diffuse
component. Deviations therefore can only stem from shadows.

This effect should manifest itself more next to high density regions and in-
deed this is the case in our mock spectra. In Figure 5.2.1 some examples for
shadowing can be found at 1.755× 104 km/s or 1.70× 104 km/s. These effects
show up as differences between the prediction of the Gnedin model and the ra-
diation transfer solution independent of scattering effects (i.e. in the upper and
lower panel of Figure 5.2.1). In the direct vicinity of these lines are saturated
lines, which indicate the presence of higher density regions.

In the z = 4.9 case shadowing should be more prominent due to the higher
densities involved and indeed this is the case in Figure 5.2.2. At 1.15×104 km/s
shadowing affects this region. Again, it is right besides a high density region.

By just looking at the mock spectra, we can conclude that shadowing influ-
ences the ionisation state of the medium around high density regions. How
this will influence statistical properties, is discussed later.

The second transfer effect studied is the influence of a diffuse component.
The impact of this component is small as compared to shadowing. But still it is
noticeable by comparing the full transfer mock spectras (black lines) including
the diffuse component (upper panels) with the ones lacking it (lower panels).
At redshift z = 4 we identify three areas where the effect is visible. These
would be at 1.605×104 km/s, 1.63−1.67×104 km/s, and 1.83−1.85×104 km/s
in Figure 5.2.1 (upper panel). The differences are slight but can be best seen
at places, where in the lower panel the spectra does not match the Gnedin
model, but in the upper it does.

It would be expected, that a diffuse component is more prominent around
high density regions. There the probability for electrons to recombine is higher
and more diffuse photons are produced. This can be confirmed in the mock
spectra. For example the differences at 1.83− 1.85× 104 km/s are right next to
a saturated line.

In the redshift z = 4.9 case we expect the diffuse component to have a
greater effect, again due to the higher densities involved. By simply look-
ing at the mock spectra in Figure 5.2.2 we again identify three regions in the
spectra where the effect is observable. It manifests itself at 1.025 × 104 km/s,
1.11 × 104 km/s, and at 1.29 × 104 km/s. Again the differences to the no dif-
fuse component run are quite small. As before, they are located around high
density regions.
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5 Radiative Transfer Effects on the Ly-α Forest

By analysing mock spectra and comparing them with spectra obtained through
the Gnedin model we can identify radiative transfer effects. The biggest influ-
ence has shadowing. A diffuse component arising from recombination events
only has a marginal effect on the spectra. All these effects are higher around
more saturated and therefore denser regions, as predicted.

5.2.2 Mean Effective Opacities

We want to proceed with our analysis similar to Chapter 2.5. We begin by
computing the simplest statistical property of the Ly-α forest, the mean effec-
tive optical depth τeff . In Figure 5.2.3 the mean effective opacities are given
for our three runs (black stars), comparing them to the results of the Gnedin
models (gray stars) and observational data by Schaye et al. (2003).

Overall we can replicate the values deduced with the Gnedin model. In
general, the ACRASH models are a bit optically thicker than the Gnedin model.
This is mainly due to shadowing effects, but the influence is quite small. In
order to completely reproduce the observational data with our models, a small
increase in the UV background flux JHI would be necessary. But it should
be noted that the UV background is independently restricted by the proximity
effect and the QSO luminosity function. Only within our model it is a free
parameter.
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Figure 5.2.3: The effective optical depth of the Gnedin models (gray stars)
compared to the ones derived with ACRASH. Open circles rep-
resent measurements by Schaye et al. (2003).
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5.2.3 Probability Distribution Function

We now want to turn our attention to the transmission probability distribution
function PDF. We compare the PDF at redshift z = 3, 4, 4.9 with observational
data and the PDF obtained with the Gnedin models. The results can be seen
in Figures 5.2.4 and 5.2.5. PDFs including a diffuse component (green lines)
and models excluding it (red line) are set side by side where available.

At redshift z = 3 the PDF matches the Gnedin data in the low transmission
part. This can be seen in Figure 5.2.4 upper panel. The results are identical up
to a transmission value of 0.45. Then the PDF of the radiative transfer solution
starts to deviate slightly. It seems, that low density regions are optically thicker
than in the Gnedin model. The differences to the observational data in the
high opacity part are similar to the Gnedin model. In the low opacity part, our
solution lies slightly above the observed data. This corresponds to the small
increase in the mean effective optical depth stemming from redistribution of
the total transmission to higher opacities.

The mean optical depth is slightly bigger in the ACRASH solution. This
results in a redistribution of the PDF at the low opacity end. The number of
completely ionised regions is smaller compared to the Gnedin model, which is
seen slightly below one hundred percent transmission. Shadowing effects are
probably responsible for the small difference.

Variations from the reference model in our result start to increase with higher
redshift. At redshift z = 4 (see Figure 5.2.5 lower panel) the results start
to differ stronger in the opaque region. At high opacities our model seems
to match very well. The ACRASH solution is more or less straight on the
observed PDF. But at around 0.8 deviations start to increase. We cannot be
sure, if we do not introduce errors in our results due to sampling only a smaller
simulation box. This will be discussed later in our analysis.

Scattering processes only play a minor role at redshift z = 4 if the results
with (green line) and without it (red line) are compared. In principle the two
results are identical.

At redshift z = 4.9 the gap between the full transfer solution and the Gnedin
model is about the same as before. Strikingly in the higher opacity region,
the radiative transfer solution is very good at reproducing the Gnedin model.
We get a perfect match, but at a transmission level of about 0.4, our PDF
starts to deviate from the reference. The differences are quite small, but still
big enough to smooth out the ’S’-form that is present in the Gnedin model.
The overall shape of our PDF matches better the observational data and the
gap between the two could be removed with a higher background. Again the
differences should be due to shadowing effects. The steep rise of our solution
at the right hand side of the PDF is probably introduced by only sampling a
smaller box.

At this redshift, the solution including a diffuse component is slightly different
at some parts to the solution without it. It seems, that the low density regions
are more sensible to recombination radiation than at lower redshift. This is a
little bit surprising, since in the direct comparison of mock spectras, the effect
was not that eminent.
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5 Radiative Transfer Effects on the Ly-α Forest

Concluding we can say, that our models reproduce the Gnedin model well.
Some small radiative transfer effects can be identified in the PDF which we
identify as shadowing effects. We come to this conclusion through the anal-
ysis of our mock spectra, where the effects are better visible. To produce
better matching models, the UV background flux JHI needs to be slightly ad-
justed. Deviations at low opacities stem from numerical errors which we will
demonstrate later. We now want to address possible objections to the picture
presented above and critically discuss various effects (physical and numerical)
that could influence our results.
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Figure 5.2.4: Probability distribution function at redshift z = 3. Compared
are observations by Becker et al. (2006) (black line), the Gnedin
model (blue dotted), and the ACRASH result with a diffuse com-
ponent (green).
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Figure 5.2.5: Probability distribution function at redshift z = 4 (upper) and
z = 4.9 (lower panel). Compared are observations by Becker
et al. (2006) (black line), the Gnedin model (blue dotted), and the
two ACRASH solutions with (green) and without (red) a diffuse
component.

5.2.3.1 Identifying Possible Methodical Problems

During our analysing process, we checked many different possible error sources
to see, whether the differences in the PDF are physical or purely numerical.
This section is organised as such, that we “play” a game of question and an-
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5 Radiative Transfer Effects on the Ly-α Forest

swer for the redshift z = 4 run. This allows for a better representation of this
error analysis.

It could be, that we do not sample low density regions sufficiently well.
What happens with a higher sampling resolution? When increasing the
number of photons from Np = 2.0×109 packages to Np = 1.0×1010 packages,
nothing changes. The shape of the resulting PDF stays the same and differ-
ences to the lower resolution runs are barely recognisable. This can be seen
in Figure 5.2.6
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Figure 5.2.6: Probability distribution function at redshift z = 4.0. Comparison
of our low resolution runs discussed above (green line, mostly
below the orange line) with a high resolution run ofNp = 1.0×1010

photon packages (orange line).

Could the differences stem from undersampling the PDF? Since we are
only sampling a 25 Mpc sub box of the whole box, it could be, that we are not
sampling the box properly when determining the PDF. It is possible that the 25
Mpc sub box is not representative. To check this, we calculated the radiative
transfer for the whole 50 Mpc box using Np = 1.0 × 1010 photon packages at
redshift z = 4. This corresponds more or less to the same sampling resolution
as used in the 25 Mpc case.

Unfortunately ACRASH is not yet efficient enough to solve the transfer equa-
tion in a reasonable time. To reach a solution that is in equilibrium it took about
two weeks on the 4 CPU shared memory cluster of the Astrophysical Institute
in Potsdam. With this solution we calculated once more the PDF using one
hundred line of sights (unfortunately we were not able to average the result
over different snapshots in equilibrium). The result is seen in Figure 5.2.7.
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5 Radiative Transfer Effects on the Ly-α Forest

The PDF of the small box suffers from incomplete sampling. This is best
seen at the low opacity end of the PDF. The PDF starts to fall and does not
keep on rising as in the 25 Mpc result. In the middle part of the PDF discrepan-
cies are also present to the sub box result. It seems that the relative number of
highly ionised regions is higher in the sub box than in the big run. It still needs
to be studied in more detail, whether this is related to our implementation of
the background radiation.

For this we want to see if we can identify visually, where this discrepancies
might come from and if our implementation of the background radiation intro-
duces any unwanted effects or not.
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Figure 5.2.7: Probability distribution function at redshift z = 4.0 derived from
the whole 50 Mpc simulation box (orange line) compared to the
25 Mpc result (green line).

Is there a visual difference in the ionization fraction fields? To clearly
compare the Gnedin model with the result obtained using ACRASH, we vi-
sualised the ionisation fraction fields of both methods. This can be seen in
Figure 5.2.8 for the 50 Mpc run at z = 4. The colour coding is exactly the same
for both figures and by looking at the two plots, no striking differences can be
seen.

By looking a little closer it can be observed, that the filaments of the ACRASH
solution (bottom panel) are by about one cell bigger and that some small parts
in high density regions are shielded.

In Figure 5.2.9 we plot the absolute differences of the two models to further
understand, where our results deviate. In this plot, we are able to identify one
of the possible problems. The differences could stem from shadowing effects
which would lead to inhomogeneous UV background fluxes at different places
in the box.
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Figure 5.2.8: Visualisation and comparison of slices from our 50 Mpc run at
z = 4 (lower panel) and the Gnedin model (upper panel). Shown
is the neutral ionisation fraction logarithmically colour coded.
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This can be clearly seen at the right side of the plot. There a very dense
web of filaments is present and deviations from the Gnedin model in the voids
seem to be bigger than in other voids. The dense filamentary structure is thus
shielding UV background radiation.

We also identify a problem with our implementation of the background field.
Since we are only propagating background photons parallel to the box faces,
shadowing effects have a preferred direction. This needs to be addressed in
future versions of our code.

To see how well our code performs compared to the Gnedin model, we show
the relative differences (XGnedin −Xsim) /XGnedin of the neutral fraction in Fig-
ure 5.2.10. With this it should be possible to determine the overall error of
ACRASH and whether any real flux inhomogeneities exist. It can be seen,
that the average deviation from the Gnedin model is around 10 to 20%. Then
there are regions, where the errors are bigger (white colour). This has to be
connected to the way the background field is implemented, since preferred
directions are present.

There are certain strips in the plot (for example in the middle from top to
bottom), where the difference is very small. But then there are strips, in which
more white colour (and therefore bigger deviations) can be seen. Either this
is a numerical issue with our background implementation or an indication for
inhomogeneities in the UV background caused by shielding.

Another interesting feature in the plot are diagonal rays which stem from the
diffuse component.

It is necessary to do further testing with our background implementation
and to adjust the method by propagating rays in arbitrary directions. It is also
interesting to see, how ACRASH could be improved to reduce the overall error.

From this we identify our discrepancies in the low density regions as stem-
ming from a mixture of an inhomogeneous UV flux field and in the low opacity
regions as numerical errors.

If some of the deviations are due to shadowing, the problem should
lessen if attenuation of photon packages is turned off? To test our hy-
pothesis, that shadowing is one of the responsible effects for the observed dis-
crepancies, we turned off attenuation similar to all our tests of the background
radiation implementation. The resulting PDF is found in Figure 5.2.11.

The change in the PDF is quite small and only noticeable in the opaque
part of the PDF. A slight shift upward is visible right to the transmission value
of 0.8 is seen. Shadowing effects only influence the overall properties of the
PDF slightly. The main problem is thus the accuracy of the CRASH/ACRASH
scheme.
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Figure 5.2.11: Probability distribution function at redshift z = 4.0. Compari-
son of the run without attenuation (orange line) with the original
results.

Figure 5.2.9: Visualisation of absolute deviations from the Gnedin model to
the ACRASH solution. Color coding gives absolute errors
|Xsim −XGnedin| to the Gnedin model in a logarithmic scale.
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Figure 5.2.10: Visualisation of relative deviations from the Gnedin model to
the ACRASH solution. Color coding gives relative errors
(XGnedin −Xsim) /XGnedin of the ACRASH result in relation to
the Gnedin model.

5.2.4 b-Parameter Distribution

The last statistical property studied is the b-parameter distribution. As in our
discussion of our Gnedin models, we analysed the results obtained with ACRASH
using our Voigt-profile fitter. The results are found in Figure 5.2.12. We com-
pare both the ACRASH results (green lines) with the Gnedin results (red dotted
lines) and see practically no difference.

This is not really surprising since the b-parameter is an indicator for the gas
temperature. Since we did not alter the gas temperature due to photoheating,
the line broadening should be identical as in the Gnedin case.
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Figure 5.2.12: b-parameter distribution in our spectra using the Gnedin model
(red dotted line) compared with results from ACRASH calcula-
tions (gree line). Where available, observational data by Kim
et al. (2001) is shown (black line). Redshifts shown from left to
right and top to bottom are: 4.9, 4.0, and 3.0.
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6 Conclusions

In this thesis we wanted to reevaluate a simple analytical model of the Ly-α
forest developed by Hui et al. (1997). As a first step model parameters for this
analytical model were sought for our 50 Mpc dark matter simulations. These
simulations used a WMAP3 cosmology.

Model parameters able of reproducing observational data were found for
redshifts z = 1, 2, 3, 4, 4.9, 5.7 and are summarised in Table 2.1. We studied the
analytical model extensively and analysed different physical effects influencing
the results. The effects of an additional peculiar velocity field and a component
resembling an additional temperature term (micro turbulence) were discussed.

To test the analytical Gnedin model, a general radiative transfer code was
developed. We implemented our own version of the cosmological Monte-Carlo
continuum transfer code CRASH by Maselli et al. (2003) . At the moment our
version only incorporates hydrogen gas. An implementation for a background
radiation field was developed and implemented into our version of CRASH. We
named our code ACRASH. This implementation and the whole code as such
was extensively tested.

To check the Gnedin model, we mapped our dark matter simulations to hy-
drogen gas densities and used the effective equation of state to derive the
gas temperature. This is an identical setup as in the Gnedin model. We then
solved the full transfer equation for an UV background field using ACRASH.

In general we can confirm the model by Hui et al. (1997) with radiative trans-
fer. We expect several radiative transfer effects to be observable. These are
shadowing effects and changes in the ionisation fraction due to electron re-
combination radiation. We identify shadowing to affect the Ly-α forest. The
diffuse component only plays a minor role. Radiative transfer effects start to
become important at a redshift of z = 3 and increase at higher redshifts.

Statistical properties of our models were studied and compared with proper-
ties of the Gnedin model. The ACRASH solution differs greatly at low opacities
to the Gnedin model. We thoroughly analysed the differences and could iden-
tify two sources for the differences.

The first is the overall performance of the CRASH/ACRASH scheme. The
mean deviation of our results from the Gnedin model lie at around 10 to 20%.
This is a major problem if statistical properties of the Ly-α forest at low opacities
are studied.

Another factor is that the UV background is not homogeneous in our sim-
ulations and is partly responsible for the deviations. These inhomogeneities
stem from shadowing effects and are also intrinsic to our implementation of
the background field. Our implementation does not seem to be perfect and dif-
ferent numerical effects arise. Whether and how these issues are responsible
for the discrepancy needs to be studied in more detail.
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6 Conclusions

We therefore cannot conclusively identify radiative transfer effects and quan-
tify them. Problems with ACRASH’s background flux implementation need to
be definitively ruled out first and corrected if necessary. The question of ac-
curacy of the scheme needs to be addressed and whether a higher sampling
resolution could reduce the errors. An MPI parallelised version of the code
would help with this task.

Also further comparison tests with other radiative transfer codes need to be
realised. It is especially interesting to see, how other codes perform in the low
density regime of the Ly-α forest.
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