
Numerical Stability Study of a Galactic Stellar Disc

Adrian M. Partl

Abstract

In this bachelors thesis, the effect of a penetrating massive object on the
galactic thin disk has been studied using numerical simulations. It was possible
to show, that penetrating object are effecting the galactic disk, by heating it up,
but it was impossible to make this effect responsible for the evolution of the thin
disc to the thick disc.

1 Introduction
For many years, students of astronomy have been taught, that our Milky Way galaxy can
be divided into three parts - bulge, disc, and halo. This is not fundamentally wrong, but,
as Gilmore & Reid proposed in 1983, a more distinguished view is needed. By analysing
the density distribution of stars vertically to the galactic plane, they could identify two
distinct features (Gilmore & Reid 1983). Their data showed a sudden change in the
density gradient at around 1.5 kpc altitude, dividing the density profile of our disc into
two parts. They called these two regions the “old disc” (now being called the “thick
disc”) and the “thin disc”. Since then we had to subdivide the disc into two components
and gained a new view of our galaxy as shown in Figure 1.1.

Galactic

Plane

Halo

Thick

Disc

Thin

Disc

Buldge

Figure 1.1: Schematic view of the Milky Way Galaxy (Buser 2000)

Another observational indicator can be used to show the existence of features in our
galaxy. Stars that were formed at an earlier epoch in the history of a galaxy should
not show a high metallicity (for example Fe/H). Younger stars however show higher
metallicity since they contain of gas that has already been processed in stars before. A
detailed study of this relation has been recently published by (Nordström et al. 2004). It
can be seen in their Figure 27, that stars up to the age of about 3 Gyr show a correlation
between age and [Fe/H] in such a way that older stars show an abundancy in iron.
Stars older than 3 Gyr do not show such a correlation, they are scattered throughout
age-metallicity space below the value for solar metallicity of 0 dex. This indicates, that
stars younger that 3 Gyr must have had some kind of shared history for a correlation
to show. It has been proposed by (Gilmore et al. 1989) that this could be explained
with a simple model of constant supernova rates in the ratio 1.5:1.0 for Type I:Type II
supernovae.

1

Figure 1.2: U, V and W velocities in relation to age of all sample stars. With increas-
ing age of the stars, the velocity increases. This is visible in the fanning out of the
distributions to the right. (Nordström et al. 2004)

Many theories surfaced on how these disc components could have evolved. Several
theories have been discussed of which the three most important are: the different discs
are leftovers of past quasi-static phases during the collapse of the protostellar cloud to
the galactic disc (Gilmore et al. 1989). Another tries to explain the thick disc with gas
aggregated from galaxies that merged or just interacted with the Milky Way (Gilmore
2003). Yet another theory proposes a heating mechanism for the thin disc, where parts
of the thin disc could have expanded to the thick disc by means of massive objects
penetrating the galactic plane (Wielen et al. 1992). These objects could be massive
black holes (Wielen et al. 1992) or cold dark matter halos (Font et al. 2001) in orbit
around the galactic center. This is the theory that served as an inspiration for this work
and served as a challenge to see, whether this effect could be simulated using just a
simple N-body algorithm and a ordinary computer.

1.1 Effect of an Irregular Galactic Potential on the Disc
In 1977, R. Wielen was searching for a way to explain the correlation between the
velocity dispersion of stars, and their time of formation. The older a star is (in regard
to its time of formation), the higher is its velocity. This can be seen in Figure 1.2, taken
from the Geneva-Copenhagen survey by Nordström et al. (2004). Freeman & Blend-
Hawthorn (2002) provide following values for the vertical velocity dispersion σz: for
stars younger than 3 Gyr σz ∼ 10km s−1, stars between 3 and 10 Gyr σz ∼ 20km s−1,
and stars older than 10 Gyr σz ∼ 40km s−1.

Wielen tried to explain this phenomena by arguing, that the galactic potential should
not be considered flat and smooth. Instead he introduced an irregular galactic potential,

2

but refrained from stating the causes for these irregularities. Using this, he derived a
theory of diffusion in velocity space and could find diffusion orbits that match observa-
tions quite well. The main idea was, that a star moving in an irregular galactic potential
gains energy from these irregularities, thus resulting in higher velocities. One has to
keep in mind, that at the time Wielen formulated this theory, the thick disc had not
been discovered yet as an individual entity.

One way of creating an irregular potential consists of taking some very massive
objects and let them pass through the galactic disc: This will heat up the disc and
results in expansion of the thin disc. These objects could be massive black holes. In
this work, the influence of a massive object on the thickness of the galactic disc is
simulated, by using the NBODY0 algorithm developed by Aarseth and described in
(Aarseth 2001) and (Aarseth 2003).

The use of an N-body simulation has some advantages over an also appropriate
hydrodynamic approximation. By using a hydrodynamic approximation, isotropy needs
to be assumed. In reality the particles in the galactic disc show an elongated veloc-
ity ellipsoid, showing that isotropy is not approperiate. A direct consequence by just
applying a hydrodynamic model would be that a heating up of the stellar “gas” will
occur if energy is added to the system. Since in a hydrodynamic world, the penetrating
particle needs to be exchanged with some kind of energy source, an increase in heat is
the direct consequence. It is thus interesting, if this occurs in an N-body world (as it
should) or not. Another advantage of a N-body simulation is, that the effect of a single
penetrating particle can be studied. In a hydrodynamic view, there is no existence of
one single particle, since hydrodynamics is all about statistics. The penetrating particle
can only be expressed by blurring it into some kind of energy source, thus changing the
characteristics of the penetrator. Because of all this, a N-body simulation was found
to be appropriate. It is convenient to take a closer look at the algorithm used in this
simulation.

2 Predictor-Corrector Integration Method

2.1 Basics
Different ways of solving the N-body problem exist. For our considerations we used the
predictor-corrector method as has been heavily employed by Aarseth in his works on the
N-body problem. We will try to understand the principles of solving N-body problems
and will gradually develop the integration scheme.

First it is important to take a closer look at the physics underlying N-body problems.
The problem can be simplified such, that only gravitational forces will be interacting
with simulated particles. It is thus evident, that Newton’s Law of Gravity (2.1) will
come to effect in a slightly modified way.

~̈ri = −G

N∑
j=1;j 6=i

mj (~ri − ~rj)
|~ri − ~rj |3

(2.1)

This describes the force of all particles j, affecting particle i. G is the gravitational
constant. For convenience we will define G = 1, resulting in scaled units. In this system,
the left side of equation (2.1) can be defined as the force per unit mass ~Fi on particle i.
To facilitate reading, particle indices will be omitted and only used when necessary. A
softening parameter ε is introduced which will prevent particles from coming too close
together. This will lead to softened collisions and thus prevents a division by zero. We
transform equation (2.1) respectively and bring it into the more convenient form

3

~Fi = −G
N∑

j=1;j 6=i

mj (~ri − ~rj)(
r2
ij + ε2

)3/2
(2.2)

with rij being the separation of particle i to j.
These are the principles upon which the predictor-corrector scheme has been built.

Each single particle has to be characterised with certain attributes. In the most basic
case, these are the mass of the particle m, its velocity vector ~v and its position vector
~r. Since the mass is assumed to be constant and is defined by the initial conditions, a
method of calculating the position and the velocity needs to be developed. This can
be done through simply integrating (2.2) which will give us a system of highly coupled
differential equations that can only be solved analytically for N = 2.

~̈ri(t) = ~Fi

~vi(t) = ~Fi∆t + ~vi(t0)

~ri(t) =
1
2

~Fi∆t2 + ~vi(t0)∆t + ~ri(t0) (2.3)

∆t shall be ∆t = t− t0, i.e. a suitably small time interval. The aim of the following
considerations will be the development of an algorithm to determine the functional
development of ~F . At many points in these reflections it is being tried to minimise
redundancy in calculation. This might make things not clear at first thought. It is very
important to eliminate redundancy as much as possible to reduce calculation times, since
the code will be iterated many times, multiplying processing time of every redundant
operation by millions.

2.2 Force Polynomial

The general idea of determining the changes of ~F (t) on a certain particle is, to take
the force at four epochs in the past and present (usually the last three evaluated forces
at the epochs t3, t2, and t1, and the current force at t0) and fit a polynomial through
these force points. It is then possible to extrapolate the force to an epoch t0 + ∆t in
the future, i.e. we predict the force applied on this one particle. Figure 2.1 clarifies this
method.

F
t

F

t
t t t t t + tD
3 2 1 0 0

Figure 2.1: Principle of predicting the force applied on one particle using a force poly-
nomial

This approach can only be applied, if the force varies only smoothly and not suddenly.
Of course it is not necessary to limit the force polynomial to the fourth order. Higher

4

order polynomials have been used by others, but four orders have been shown to be
sufficient for most purposes. Knowing the force ~F at the four epochs in the past t3,
t2, t1, and t0 with t0 being the most recent, we can formulate the fitting polynomial at
time t as

~F =
{[(

~D4 (t− t3) + ~D3
)

(t− t2) + ~D2
]
(t− t1) + ~D1

}
(t− t0) + ~F0 (2.4)

Since the fitting method is based on divided differences, using compact notation, these
differences ~Dk are defined as

~Dk [t0,tk] =
~Dk−1 [t0, tk−1]− ~Dk−1 [t1, tk]

t0 − tk
,with (k = 1, 2, 3) (2.5)

where ~D0 ≡ ~F . The square brackets refer to the corresponding time intervals, for which
the difference is being evaluated.

2.3 Further Development of the Method
Until now, we have developed the basic idea of the predictor-corrector integration
scheme by using a fitting polynomial and then extrapolating (predicting) the force
at the time epoch t0 + ∆t. This idea still needs to be transformed into a more usable
form to construct the algorithm. Further, a way to utilise our initial conditions and
initialise the algorithm has to be found.

By expanding equation (2.4) into a Taylor series, simple expressions for integration
can be gained. For this, we introduce t′k = t0 − tk. Equation (2.4) will then look like

~F =
{[(

~D4t′3 + ~D3
)

t′2 + ~D2
]
t′1 + ~D1

}
t′0 + ~F0. (2.6)

The terms of the Taylor-series can be obtained by differentiating equation (2.6) often
enough and adding the pre-factors to each term. For the first term this yields

~F (1) =
[(

~D4t′3 + ~D3
)

t′2 + ~D2
]
t′1 + ~D1 (2.7)

which is expanded

~F (1) = ~D4t′3t
′
2t
′
1 + ~D3t′2t

′
1 + ~D2t′1 + ~D1.

Through a second differentiation with respect to t′3, t′2, and t′1 we will obtain

~F (2) = 2!
[

~D4 (t′1t
′
2 + t′2t

′
3 + t′1t

′
3) + ~D3 (t′1 + t′2) + ~D2

]
. (2.8)

Doing this again twice will lead to the last two terms of the Taylor series

~F (3) = 3!
[

~D4 (t′1 + t′2 + t′3) + ~D3
]

(2.9)

~F (4) = 4! ~D4 (2.10)

These equations can be used to find an expression for ~F by putting t = t0. Further, these
terms can be transformed into expressions for the divided differences. A problem arising
at later time will be, that the value of ~D4 is not known yet. As can be seen from the
equations above, the respective values of ~D4 can be added to the corresponding terms
at a later time, after having determined a value for ~D4. This is the correction part
of the predictor-corrector method. The force is predicted with the first three known
divided differences. Then this “imprecise” value is used to determine a value for ~D4

(using equation 2.5) and afterwards the force can be evaluated again, this time using
the correction term ~D4, resulting in a more precise value.

5

2.4 The Initialisation Procedure
It is important to correctly initialise the algorithm, otherwise correct results cannot be
achieved. Initialisation will make use of the initial conditions that have to be defined
for each problem. The initial conditions of one particle are mj , ~rj , and ~vj . Now the
Taylor series derivatives of (2.2) are formed. Again, to facilitate writing let us define
~R = ~ri − ~rj and ~V = ~̇R = ~vi − ~vj . A detailed look at the derivations of the equations
below can be found in A. Equation (2.2) thus transforms with G = 1into

~Fij =
−mj

~R

R3
(2.11)

The first term of the Taylor series is

~
F

(1)
ij =

−mj
~V

R3
− 3a ~Fij (2.12)

with a = ~R · ~V /R2. Summation over all particles N will give the total contribution to
the Taylor-series for one particle. The next two Taylor-series terms are

~
F

(2)
ij =

−mj

(
~Fi − ~Fj

)
R3

− 6a
~

F
(1)
ij − 3b ~Fij (2.13)

~
F

(3)
ij =

−mj

(
~

F
(1)
i − ~

F
(1)
j

)
R3

− 9a
~

F
(2)
ij − 9b

~
F

(1)
ij − 3c ~Fij . (2.14)

with a = ~R · ~V /R2 and

b =
(

V

R

)2

+
~R ·
(

~Fi − ~Fj

)
R2

+ a2 (2.15)

c =
3~V ·

(
~Fi − ~Fj

)
R2

+

~R ·
(

~
F

(1)
i − ~

F
(1)
j

)
R2

+ a(3b− 4a2) (2.16)

Again, a summation over all particles will lead to the total contribution. For equations
(2.13) and (2.14), the total force contributions ~F and ~F (1) need to be known, before
~F (2)and ~F (3) can be initialised. Therefore it is necessary to implement two separate

loops (looping through all particles N). The first one initialises ~F and ~F (1), the second
one ~F (2)and ~F (3).

We have now developed a procedure for boot-strapping the algorithm. Now the
initial time steps should be assigned to each particle. t0 will be set t0 = 0 and constant
time steps over the interval used for initialisation will be assumed. For this, a ∆ti needs
to be calculated, using considerations discussed later (2.18/2.19). The past epoch time
steps can now be calculated using tk = −k∆ti with (k = 1, 2, 3).

Since starting values for the divided differences are needed, now would be a good
time to calculate them. The divided differences are needed for the integration algorithm
discussed later and are also used in equation (2.4) for extrapolation. A way of expressing
~D1, ~D2, and ~D3 has to be found. For this, equations (2.7), (2.8), and (2.9) will be
inverted, starting with (2.9) and always omitting ~D4. This leads to

6

~D1 =
(

1
6

~F (3)t
′

1 −
1
2

~F (2)

)
t
′

1 + ~F (1)

~D2 = −1
6

~F (3)
(
t
′

1 + t
′

2

)
+

1
2

~F (2)

~D3 =
1
6

~F (3) (2.17)

from which the starting values can be calculated.
The initialisation process is summarised in Algorithm 1, presented below.

Algorithm 1 Initialisation procedure

1. Read mj , ~Rj , and ~Vj of all particles

2. Loop (looping index i) through all particles N to calculate ~Fi and ~
F

(1)
i

(a) Loop (looping index j) through all particles N , calculating the force of
each particle j on particle i using equation (2.11) and (2.12). You will

get ~Fij and ~
F

(1)
ij

(b) Summation over contributions of all particles j will result in total force
~Fi and ~

F
(1)
i

3. Loop (looping index i) through all particles N again to calculate ~
F

(2)
i and

~
F

(3)
i

(a) Loop (looping index j) through all particles N , calculating terms ~
F

(2)
ij and

~
F

(3)
ij using equations (2.13) and (2.14)

(b) Summation over contributions of all particles j will give total ~
F

(2)
i and

~
F

(3)
i

4. Determine time-steps for current and past epochs using equation (2.18) or
(2.19) for each particle and calculate the starting value for the divided differ-
ences using (2.17)

2.5 Individual Time Steps
Now that we know how initialisation is achieved, it is good to take a closer look at the
integration process. But before doing this, some thought should be given to the use of
time steps. To determine the force at some point in the future, the polynomial fitting
function (2.4) is used and extrapolated to a time t0 + ∆t. This ∆t is what we call a
time step.

There are several ways to integrate using time steps. The obvious method is to
globally advance the time constantly by ∆t, so that every particle is evaluated at the
same time t0 + ∆t. This method has some major drawbacks.

Let us consider the path of two particles interacting with each other. For simplifi-
cation one particle is put into a system of rest. The second particle will pass the other
particle in considerable small distance, so the interaction will be strong between the
two particles. This is illustrated in Figure 2.2, where the starting position of the second

7

particle is on the upper right hand side. The thick line describes the path, resulting
from analytical considerations. The dashed line represents the path that the particle
would take by just extrapolating the current fitting function using a global time step.
The endpoints of both particles are shown after the global time step ∆t. One can see,
that the particle is not at the position where it should be after this integration step.
Extrapolation has been carried out way over the region where the fitting function can
be considered similar to the “correct” function, thus causing substantial error. The error
is especially big in close encounters. To minimize the error resulting from global time
steps, very small global time steps are needed throughout the simulation, resulting in
(very) large calculation times.

Figure 2.2: Illustrating the individual time step scheme. The thick line is the path a
star would take in reality (and with the individual time step scheme) after a time step
∆t. The dashed line represents the path that a star would take in simulation with global
constant time steps after the same time step ∆t.

To minimize errors resulting from approximation by the fitting function, Aarseth
introduced in 1963 the individual time step scheme to minimize the effect described
above and bringing the fitting function nearer to the “correct” function. The main idea
was to have individual time steps for each particle in the simulation and not just one
global time step for all. It is then possible to adjust the time steps in the event of a
close encounter and thus enhancing precision considerably. A good side-effect of this
scheme is, that particles with weak interaction can have bigger time steps, resulting in
reduction of calculation time.

Several criteria for calculating the time steps can be used and only two shall be
stated here. η is a dimensionless parameter for controlling accuracy of the simulation.

∆ti =

 η
∣∣∣~F ∣∣∣∣∣∣ ~F (2)
∣∣∣
1/2

(2.18)

Equation (2.18) is rather simple and fit for most cases. It produces similar relative
errors of the force and leads to similar time steps for strongly interacting particles
(Binney & Tremaine 3. edition, 1994). Aarseth developed a more sensitive criterion,
including more force derivatives. Through experimentation he was able to find

∆ti =

η

(∣∣∣~F ∣∣∣ ∣∣∣ ~F (2)
∣∣∣+ ∣∣∣ ~F (1)

∣∣∣2)∣∣∣ ~F (1)
∣∣∣ ∣∣∣ ~F (3)

∣∣∣+ ∣∣∣ ~F (2)
∣∣∣2

1/2

(2.19)

A detailed look at time step criteria and other formulations can be found in (Makino
1991).

8

2.6 Integration
Integration begins by determining the next particle i to be advanced. The particle j
with the smallest value of tj + ∆tj is the next to be integrated. This makes sense
since its interaction with the other particles can thus be determined better for particles
with a higher value of tj + ∆tj . Hence particles are processed chronologically. It is
expedient to set global time t to this new value of time tj + ∆tj to reduce redundancy
in calculation.

Aarseth introduced in his individual time step scheme two types of coordinates for
each particle, namely primary and secondary coordinates r0 and rt. The primary coordi-
nates r0 are being evaluated at time t0 and represent the actual “precise” coordinates of
the particle. The secondary coordinates rt are based on the primary ones by evaluating
the predictor at the time t. The predictor is the function that will be used to predict
the position of a particle. For this we will use the Taylor-series expansion of ~rj only to
the order of ~F (1). A higher order could also be used, prolonging calculation accordingly.
The Taylor-series expansion of ~rj in (2.3) to the order of ~F (4) is

~rj =
1

720
~

F
(4)
j δt

′6
j +

1
120

~
F

(3)
j δt

′5
j +

1
24

~
F

(2)
j δt

′4
j +

1
6

~
F

(1)
j δt

′3
j +

1
2

~Fjδt
′2
j +~v0δt

′

j+~r0 (2.20)

with δt
′
= t − tj . The expansion to the order of ~F (4) has been given, because we will

need it later. Prediction is only carried out to the order of ~F (1). To further reduce

redundancy we define ~̃F = 1
2F ,

~̃
F (1) = 1

6
~F (1),

~̃
F (2) = 1

2
~F (2), and

~̃
F (3) = 1

6
~F (3). The

pre-factors in
~̃

F (2) and
~̃

F (3) are obtained trough the pre-factors in (2.8) and (2.9). This
will collect some of the pre-factors in (2.20) and let us write

~r =
((((

6
10

~̃
F (3)δt

′
+

~̃
F (2)

)
1
12

δt
′
+

~̃
F (1)

)
δt

′
+ ~̃F

)
δt

′
+ ~v0

)
δt

′
+ ~r0 (2.21)

~v =
(((

0.75
~̃

F (3)δt
′
+

~̃
F (2)

)
1
9
δt

′
+

~̃
F (1)

)
1.5δt

′
+ ~̃F

)
2δt

′
+ ~v0 (2.22)

Now that all values of ~rj , including the current particle i, have been predicted to
the order of ~F (1), particle i has to be improved to the order of ~F (3) by just adding
the appropriate missing terms of equation (2.21) to the already calculated expressions.
Next the velocity of particle i has to be calculated as well, using (2.22). Now the total
force exercised by all the other particles j on particle i has to be calculated through
summation of (2.2) over all particles. This is also the time, where any contribution of
an external potential, resp. force, needs to be considered.

To be able to form new divided differences, the four times describing the past epoch
need to be updated by replacing tk with tk−1 and putting t0 = t. Now the actual
integration will take place by forming new divided differences using (2.5), including ~D4.
With the new ~D4, a new ~F (4) can be obtained from (2.10). It is now possible to correct
the current values of the coordinates and velocity using ~F (4) by collecting all the terms
that were omitted until now. Combining all contributions, these correction terms can
be found, again using compact notation as above

∆~ri = ~F (4)

(((
2
3
δt

′
+ c

)
0.6δt

′
+ b

)
1
12

δt
′
+

1
6

)
δt

′3

∆~vi = ~F (4)

(((
0.2δt

′
+ 0.25c

)
δt

′
+

1
3
b

)
δt

′
+ 0.5a

)
δt

′2 (2.23)

9

Algorithm 2 Individual time step cycle
1. Determine the next particle: i = minj {tj + ∆tj}

2. Set new global time to t = ti + ∆ti

3. Predict all coordinates ~rj of all particles to order ~F (1) (2.21)

4. Form ~F (2) and ~F (3)for particle i with (2.8) and ~F (3) = 6
~̃

F (3) = ~D3 (for this
consider 2.9)

5. Improve ~ri and predict ~vi to order ~F (3)(2.21 and 2.22)

6. Obtain total force ~Fi on particle i by all the other particles

7. Update the times tk and calculate divided differences using (2.5)

8. Apply the corrector ~D4 to ~ri and ~vi (2.23)

9. Calculate new time step ∆ti (2.18/2.19)

10. Repeat calculation at step 1

The coefficients are a = t
′

1t
′

2t
′

3, b = t
′

1t
′

2 + t
′

1t
′

3 + t
′

2t
′

3, and c = t
′

1 + t
′

2 + t
′

3 where the
old definition of t

′

k still applies. Now the primary coordinates can be updated by setting
r0 = rt and a new time step needs to be evaluated for particle i.

This is the fourth-order predictor-corrector scheme as developed by Aarseth. A
summary of the integration algorithm is provided with Algorithm 2 listed below. To
implement the scheme, one requires at least the following 30 variables for each particle:
m, ~r0, ~rt, ~v0, ~F , ~F (1), ~D1, ~D2, ~D3, ∆t, t0, t1, t2, t3. My implementation uses all the
variables used in the scheme (i.e. more than the basic 30 values), making the program
easy to read. Saving memory space is not as much an issue today, as it has been when
Aarseth developed this scheme.

3 Handling Simulations

3.1 Scaled Units
Processing numbers with a computer comes with some restrictions. It is impossible to
store arbitrarily big or small numbers in the computer’s memory. Depending on the data
type some upper and lower limits exist and restrictions in precision apply. It is therefore
necessary to carefully chose the data types when developing a scientific application.

In astronomy, numbers tend to be very big. Hence, some thoughts should be given
on how to reduce number size, preventing unwanted buffer overflows. It is obvious, that
SI-units are no good choice and other units should be considered. Distances for example
should not be given in meters, but parsec is suitable. The same applies to mass, where
solar-mass is a quite useful unit. In our simulation we used parsec for distances and
solar-masses as the unit of mass.

By putting the gravitational constant G = 1, another rescaling of the units has to
be done. The gravitational constant contains the units meter, kilogram, and second. If
G should be 1, it is not possible to define all these units as one pleases. At least one
unit needs to be derived from the other two. Otherwise G = 1 is being violated. An
example shall be given, how rescaling has been done throughout this paper.

Since the initial conditions for these simulations are the particle mass, position, and

10

velocity, let us use solar-masses for the mass and parsec for the position. It is not
possible to choose any unit for the velocity since it is dependent on the time, which will
be scaled through the gravitational constant. The value of G in SI-units is G = 6.672 ·
10−11m3kg−1s−2. It is now necessary to transform this value accordingly to the units
chosen. This yields G = 4.5169 · 10−30pc3M−1

� s−2. Now from this, a conversion factor
can be found for one unit of scaled time 1 unit of time = 4.705 ·1014s = 1.492 ·107yr.
One unit of time in the simulation is thus 1.492·107 years long. This means, the velocity
has to be adapted accordingly.

3.2 How to Tell, if the Simulation Runs Correctly?
There is no standardised way of determining, whether a simulation runs correctly or not.
Physics supplies laws that need to apply in our simulated world as well. This results in
several different ways of determining, whether anything has been done wrong or not. An
easy way of monitoring the “correctness” of the simulation is to check, whether energy
conservation is being violated or not. This could happen due to low precision in the
simulation or fundamental errors in program code.

Energies in the simulation can be calculated using normal physical relations like the
equations for the kinetic energy (3.1) or the potential energy (3.2).

Ekin =
1
2

N∑
i=1

mi~vi
2 (3.1)

Epot =
N∑

i=1

N∑
j>i

Gmimj

|~ri − ~rj |
(3.2)

In case an external potential is used, the appropriate terms have to be added to the
energies. It is very unlikely, that no violation of energy conservation will take place,
since every simulation is only an approximation of reality, but the violation should not
be significant.

It makes no sense to calculate the energies anew after every integration step. Instead
it is convenient to perform the energy check only when outputting data. This is usually
done after some time has passed in the simulated reality.

Another good way to test a simulation is to take a scenario that can be solved
analytically or where the outcome is already known. For a N-body simulation this could
be the orbit of a planet around the sun. But it might not be possible to eliminate all
problems with this test. If there is, for example, something wrong with a loop in the
code, using only two particles could be too few for coding errors to have significant
effects.

3.3 Computation Time and Accuracy Parameter η

Many factors influence computation time. Some of them can be controlled by the user,
others are static properties of a computer system as a whole. A big factor in this
whole affair is undoubtedly the program code itself. By reducing the redundancy in
the calculation, speed can be greatly improved in structures, that have to be processed
many times over and over again. This includes the conversion of all fractions to real
numbers. Also a good idea is to collect all multiplications and divisions where possible.

Speed can also be gained, by carefully analysing the equations used in the algorithm.
Many times, the same expressions shine up in parts of different equations. It is a good
idea to calculate these only once, saving them in some temporal variable, and then just
use the value of the variable when needed. Of course this can only be done as long as
these partial expressions do not change.

11

Some of these considerations have already been discussed briefly before and resulted
in somewhat cryptic but highly optimised equations in Chapter 2. Binney & Tremaine
introduced many other small optimisation considerations in their NOBODY0 FORTRAN
code, published in the Galactic Dynamics book. This code has been used as a basis for
this simulation, and has been adopted accordingly to the C/Objective C programming
language. Optimisations resulting in higher speed have been taken over, but measures
reducing memory usage were dropped, favoring a code that is easier to read. Memory
space is not a big issue anymore today and therefore a factor that can be ignored in
this case.

The selection of the accuracy parameter η as introduced in equations (2.18) and
(2.19) has also an effect on calculation time. The accuracy parameter can be used
to control precision of the simulation. The higher the precision should be, the more
calculation time must be applied. Figure 3.1 shows the influence of η on the calculation
time. For these measurements, a statically defined system of 10 particles has been used,
simulated over the time of one simulation unit. As a measurement of time, iterations
have been counted. To compare this with the effect η actually has on the precision,
Figure 3.2 has been created, showing the difference in total energy of the system at
the beginning and end of the simulation. In a perfect simulation, no difference should
arise.

0.00 0.02 0.04 0.06 0.08 0.10
500

1000

1500

2000

2500

3000

Ite
ra
tio

n
C
ou

nt
s

Accuracy parameter

Figure 3.1: The effect of the accuracy pa-
rameter η on calculation speed. A stati-
cally defined system of 10 particles simu-
lated over one time unit has been used.
Iteration counts were used as speed indi-
cator.

0.00 0.02 0.04 0.06 0.08 0.10

0.015

0.020

0.025

0.030

0.035

0.040

0.045

St
ar
tin

g
E
ne

rg
y

- E
nd

 E
ne

rg
y

Accuracy parameter

Figure 3.2: The effect of the accuracy pa-
rameter η on the accuracy itself. Energy
should be conserved, so the difference be-
tween the energy at the beginning and at
the end gives the calculation error.

The number of simulated particles N play the greatest role in calculation time.
Since for every particle, the whole particle system has to be considered, calculation
time is roughly proportional to N2. An additional particle can thus result in significant
prolongation of the simulation.

4 Simplifying the Problem and Setting Up the Disc

4.1 Simplifications
Since computation time should be kept at a minimum, further simplification of the
problem should be considered. To set up a representative galactic disc, it was tried to
simulate only a small portion of the disc. A column of about 10 x 10 pc was considered
a useful size, since with about 1000 particles, one particle has around 5M� which is
not to big. Since only a small portion of the disc was used for the simulation, the

12

velocity gradient that is found in the whole disc should be neglectable in the simulation
box. For 10 pc length, this is the case. The point where this column would be in the
Milky Way galaxy would be at the position of our sun. This will require some additional
simplifications, since we are not simulating the disc as a whole, but only a small part of
it.

The influence of the whole disc on this small portion of the disc needs to be handled
individually now, thus resulting in the need of an external potential approximating the
influence of the whole galactic system. Different forms of potentials can be used. In
this work a simple spherical potential has been found appropriate. From radial velocity
data of the surroundings of the sun (r = 8kpc, vc = 220 km/sec), a total mass of the
galaxy for this radius can be determined, resulting in a mass of 8.9865 · 1010M� for
our own galaxy. This mass has been used for the external potential, with the radius of
8kpc.

Another way to leverage calculation time and precision is to assume the galactic disc
symmetric to the galactic plane. By assuming this, only one side of the disc needs to
be considered. To prevent particles from escaping to the other side of the plane, they
are mirrored at z = 0. This can be done, since it is statistically probable, that with
each particle penetrating the galactic plane, another will enter from the other side.

This concept needs to be taken over for the boundaries of the box as well, otherwise
all the particles would escape, resulting in drop of density. This would weaken the
interaction between the particles. Due to the radial drift of stars and the neglection
of a velocity gradient in the small simulation box used, particles that escaped the box
have been returned to the system on the other side of the box.

4.2 Distribution of Particles
In order to set up a stable galactic disc, information about several features of a stable
disc is required. The particles need to be distributed in a realistic way. Further a correct
velocity needs to be determined and assigned to the particles.

Density decreases exponentially in the z-direction of the disc. This can be formulated
with a standard exponential function as ρ(z) = ρ0e

−z/hz , with ρ0 being the density at
z = 0 and hz the scale height. If ρ0 and hz are already known, no conversion needs
to be done for the density and these values can be used directly in the function. But
usually density in the galactic disc is measured as column density Σ, i.e. the total mass
located in a column of usually 1 x 1 pc. This needs to be converted into a ρ0 that can
be used in the density function. For this, we take the definition of the column density

Σ =
∫ ∞

0

ρ0e
−z/hzdz (4.1)

and integrate it. The integration term with infinity will disappear, since it is zero. Thus,
the only remaining term is ρcol = ρ0hz which can be transformed into an expression for
ρ0.

ρ0 =
ρcol

hz
(4.2)

Now the particles can be distributed randomly in a sufficiently small interval dz
using equations (4.1) and (4.2). The equations are used to determine the amount of
mass that should be distributed in the interval dz.

For the simulations a column density of 50 M� pc−2 has been used. For this, a
scale height of about 210 pc (with σz ∼ 10 km s−1) has proven to result in a quite
stable disc, with only small oscillations due to the external potential. The total mass
in the simulation box obtained through equation (4.1) has been distributed evenly over
all particles, so that each particle had the same mass. Due to integer divisions in
the distribution algorithm a small error in the particle mass of a particle has been

13

introduced. This is why with 1000 particles, the particle mass is not 5M� but 4.95M�
for the system used here.

The other parameter that needs considering while setting up the disc is the velocity
of each particle. For a realistic disc of our own galaxy, velocity values should be based
on observations. As has been mentioned in 1.1, a good medium value for the thin disc
is σtot ∼ 10 km s−1. It is possible to assign every particle another velocity, scattering
it randomly and thus creating an anisotropic velocity ellipsoid. This can be achieved
by assigning every particle a random velocity vector, thus pointing in no systematic
direction. The length of the vector needs to be corrected to the fixed value of the
velocity.

4.3 Simulation Parameters
Now that the disc has been set up, only two parameters need to be specified for the
simulation to run. These are the softening parameter ε and the accuracy parameter η.
There is unfortunately no fixed criteria for choosing values for these two parameters.
They need to be determined through experimentation and experience. Care needs only
to be taken, that energy is always conserved, otherwise the simulation is more or less
useless.

For all simulations, the following values were assumed: ε = 0.1 and η = 0.02.

5 Stable Disc

5.1 Simulation Parameters
For disturbing a galactic disc, it is necessary to set up a stable disc. Stability of a galactic
disc in this case is only affected by the scale height and the velocity dispersion. With
the simulation parameters mentioned above, a scale height for a more or less stable disc
can be determined. Through systematic trial and error, it was possible to determine
the value of hz = 210 pc for a disc, with only small oscillations around the equilibrium.
The layer, where 50% of the total mass are located underneath, only showed oscillations
around 30 pc in amplitude. For sure, a better value can be achieved, but these values
are sufficiently stable for our considerations.

This setup also seems to be quite stable regarding system energy. The kinetic energy
does not show a significant increase, only a very slight one. This is also a indication,
that this setup is more or less stable.

5.2 Results
The simulation of a stable disc, as observed in solar surroundings, has been carried
out with the parameters discussed throughout this treatise. For convenience, these
parameters are summarised below.

14

System Properties Simulation Properties
Particle number: ∼ 1000 Softening parameter ε: 0.1
Column density: 50 M� pc−2 Accuracy η: 0.02
Scale height: 210 pc Simulation duration: 1.5 · 109 yr
Mass per particle: ∼ 4.95 M�
Density distribution: exponential
Velocity σz: ∼ 10 km s−1

External Potential:
Spherical
Radius: 8000 pc
Mass: 8.9865 · 1010 M�

Table 1: Simulation parameters for a stable disc

From the results of the simulation, the kinetic energy has been calculated using
(3.1) and from position data, the evolution of the disc in z-direction has been extracted.
For this the height of layers with a certain percentage of mass underneath have been
evaluated.

In the case of a disturbing particle, a statistical evaluation of the velocity data has
been carried out, to determine if any systematic pattern can be seen in the velocity
data. For each time in the simulation, a histogram was generated from velocity data.
Thus the chronological evolution of the system could be visualised.

0.0 2.0x108 4.0x108 6.0x108 8.0x108 1.0x109 1.2x109 1.4x109
0

100

200

300

400

500

80%

70%

60%

50%
40%
30%
20%
10%

z
[p

c]

Time [Years]

90%

Figure 5.1: Development of a stable disc. Each line in the graph depicts the height,
where a certain percentage of mass lies beneath this point. It is evident, that there is
almost no expansion over time; thus the disc is stable.

Figure 5.1 illustrates the development of the stable disc over time. Each line cor-
responds to a height, where a certain percentage of mass lies beneath it. The bold
lines are the height where 30%, 50%, and 80% of the mass are situated. The most
prominent feature in this graph is definitely the oscillation taking place at all heights.

15

Since the part of the disc lies near the position where our sun is, the oscillation period
should be similar to the analytic value of one particle in a potential field. The analytic
value for the oscillation period can be obtained through the following equation which
only holds for a single particle in a potential

T =
∫ x2

x1

dx√
2 (E − U(x)) /m

where E is the total energy of the system (usually taken at a time, when there is only
potential energy, or kinetic energy) and U(x) is the potential energy at point x (only
including the external potential, not the potential created by all other particles in the
simulation). From this the oscillation period in our potential of 0.88 · 108 yr can be
found, which corresponds quite well with the simulation.

A slight increase in height can be seen in the 90% line, resulting from hard binary
interaction, i.e. particles colliding very closely. During a very close encounter between
a binary system and another particle, the initial binary system can get destroyed and
one of the partners is ejected with high velocity. A new binary system with the leftover
particle from the initial binary and the other particle forms. If this happens more often,
the disc can slightly expand, which can be seen at higher altitudes. The disc can still be
considered stable, because the lower layers stay constant. This effect is just statistical.
These hard binaries will end up in the “Maxwellian tail”.

0.0 2.0x108 4.0x108 6.0x108 8.0x108 1.0x109 1.2x109 1.4x109
45000

50000

55000

60000

65000

70000

75000

K
in
. E

ne
rg
y

[s
im

. u
ni
ts

]

Time [Years]

Figure 5.2: Kinetic energy of the system vs. time.

A look at the kinetic energy of the system (Figure 5.2) shows a more or less constant
kinetic energy. At first there is a slight drop in energy, corresponding to a damped
oscillation. Then it remains constant, with the minima decreasing and the maxima
increasing constantly. This increase is the result of hard binary interaction, as mentioned
above.

Now that the parameters for a stable disc are known, these can be used, to set up
a system that can be disturbed by a massive particle. This will produce the irregular
potential that is needed, to study its effects on a galactic disc.

16

0 1x108 2x108 3x108 4x108
0

100

200

300

400

500

z
[p

c]

Time [Years]

80%
70%
60%
50%
40%
30%

20%

10%

90%

Figure 6.1: Development of a disc, that is being penetrated by a particle with m =
20000 M0. The external potential was chosen to interact with the disturber. The dashed
line represents its path. No significant increase of the layers can be seen.

6 Disturbed Disc

6.1 Problems Arising With Reality
To simulate the effect of a disturbing massive particle on the galactic disc, a system
has been set up exactly as described above. For the particle that should penetrate the
disc, a mass of 2 · 104 M� has been used. Its starting position was at z = 900 pc
above the galactic plane. σz of the disturber has been chosen to have the same value
as the particles in the disc itself (i.e. 10 kms−1). The external potential was chosen to
interact with the particle.

After a short time of simulation it became clear, that this setup was problematic in
regard to the effect of the disturber on the galactic disc. The external particle has been
chosen to interact with the external potential, as is the case in reality. This caused the
disturber to accelerate and resulted in a very high increase of its velocity, reducing the
effect it could have on the disc. The higher the difference of velocity in an encounter
is, the smaller is its effect. As is shown in (Binney & Tremaine 3. edition, 1994) using
the impulse approximation, this effect of a high speed encounter on the velocity of a
particle can be described (for a Plummer model with a = 0) with

∆vR = −2GM

V R

It is thus not surprising, that no major effect on the disc could be seen and the scenario
was not simulated completely to the time of 1.5 · 109 yr. Figure 6.1 shows results of
this simulation. The dashed line depicts the path of the disturber. It is clearly visible,
that no considerable increase of the disc took place and that the disturber never had
time to highly interact with the disc.

Because of these plausible findings the effect of a disturber that does not interact
with the galactic potential has been considered.

17

0.0 2.0x108 4.0x108 6.0x108 8.0x108 1.0x109 1.2x109
0

100

200

300

400

500

600

z
[p

c]

Time [Years]

80%

70%

60%

50%

40%
30%
20%

10%

90%

Figure 6.2: Development of a disc, that is being penetrated by a particle with m =
20000 M0. The external potential was chosen NOT to interact with the disturber.

Figure 6.3: Statistical evolution of the velocity of the system. The number of particles
in a specific interval is the colour coded value. The medium velocity has risen from
10 km s−1 to about 13 km s−1. Also the distribution of particles in velocity space has
broadened.

18

6.2 An Unrealistic Disturber
The results of the simulation described in the last section led to the idea of excluding
the effect of the external galactic potential on the disturber. The same setup has been
used as before, except that the galactic potential was restrained from interacting with
the disturber. The disturber was able to oscillate through the disc and was mirrored
at z = 0, like all the other particles (corresponding to a particle being captured in
the galactic potential), thus passing the same particles several times. This corresponds
more or less to a continuous in fall of massive objects.

Looking at the stratification plot of this simulation in Figure 6.2, a clear expansion
of the disc can be seen. The disturbing massive particle was now able to transfer energy
to particles in the disc, resulting in an increase of temperature, thus being responsible
for the expansion. The disc expanded from an initial scale height of 210 pc to a scale
height of about 300 pc. Further indications that the temperature of the disc has risen,
can be obtained by analysing the kinetic energy data. These data show an increase in
energy, meaning that particles have been accelerated. Again this corresponds to a rise
in temperature.

A systematic acceleration of particles in the disc can be shown by evaluating the
velocity data statistically. This has been done by analysing the velocity dispersion of
the system using histograms. For each time of the simulation, a histogram with the
interval of 2 km s−1 has been created and joined together to an area plot, visualising
the evolution of the system. The result can be seen in Figure 6.3 where an overall
acceleration of the particles from 10 km s−1 to about 13 km s−1 can be detected. This
acceleration is again an indication, that energy has been transfered from the disturber
to the disc. Also a broadening of the distribution can be seen, again energy has been
transfered.

7 Conclusion
It could be shown, that a massive object penetrating the galactic disc does indeed heat
up the disc and can be made responsible for an expansion of the disc. A irregular
potential does thus have an effect on the orbits of stars in the galaxy. However in this
simulation, this effect could only be produced by making the unrealistic assumption,
that the penetrating particle is not affected by the external galactic potential.

Since the disturber was able to oscillate through the disc, a scenario with a contin-
uous in-fall of mass has been simulated. With these assumptions and an object with
the mass of 2 · 104 M0, the galactic disc could be expanded from 210 pc to 300 pc. The
mean velocity increase was from 10 km s−1 to 13 km s−1. This is by far too little to be
responsible for a heating up of the thin disc to the thick disc, because the end result
should be 1300 pc high, with a mean particle velocity of 40 km s−1. This means that
the effect of a penetrating massive object does not create the irregularities needed, to
explain the creation of the thick disc.

Using objects with higher masses could lead to the desired effect. To study this, the
simulation needs to be adopted considerably. A general problem with the disc heating
theory is, that no observational data are known, showing an in-fall of massive objects
exists. It is thus highly unrealistic, that the disc heating theory corresponds to reality.
What is sure is, that objects passing through the disc do have an effect on the thickness,
but only a very small one.

Acknowledgment
My profoundest thanks go to Gerhard Hensler for all the precious time he offered,
without this bachelors thesis would not have been possible. It is not natural, that a

19

professor invests as many hours into a student, as Gerhard has done.
As well I would like to thank my father, who let me make his computer unusable

for weeks and who did all the proofreading. Stellar physics is somewhat different to the
physics of roads, so thanks for all the time trying to grasp all the aspects of galactic
dynamics.

Appendix
A Detailed Calculations

A.1 Calculations in Section 2.4
The first taylor series derivative (2.12) can be found by keeping in mind, that

1
R3

=
1(√

~R · ~R
)3 . (A.1)

The derivative of (A.1) is

d

dt

(
1

R3

)
= −3

1(√
~R · ~R

)4 · 1

2
√

~R · ~R
· 2~R · d

dt
~R = −3

~R · ~V

R5
,

differentiation of (2.11) will lead to

d

dt

(
−mj

~R

R3

)
=

−mj
d
dt

~R

R3
+ 3

~R · ~V

R2
· mj

~R

R3

which can be written as

~
F

(1)
ij =

−mj
~V

R3
− 3a ~Fij

with a = ~R · ~V /R2. Finding the next two Taylor series terms is quite lengthy, this is
not shown here completely but some helping relations for this undertaking are:

d

dt
~V =

(
~Fi − ~Fj

)
and

d

dt
~Fij =

(
~

F
(1)
i − ~

F
(1)
j

)

d

dt
a =

d

dt

 ~R · ~V(√
~R · ~R

)2

 =
~V · ~V

R2
+

~R · d
dt

~V

R2
−

(
~R · ~V

)2

R4

b =
d

dt
a =

(
V

R

)2

+
~R ·
(

~Fi − ~Fj

)
R2

+ a2

c =
d

dt
b =

3~V ·
(

~Fi − ~Fj

)
R2

+

~R ·
(

~
F

(1)
i − ~

F
(1)
j

)
R2

+ a(3b− 4a2)

Knowing this, gradually the second and third term can be found.

20

~
F

(2)
ij =

−mj

(
~Fi − ~Fj

)
R3

− 6a
~

F
(1)
ij − 3b ~Fij

~
F

(3)
ij =

−mj

(
~

F
(1)
i − ~

F
(1)
j

)
R3

− 9a
~

F
(2)
ij − 9b

~
F

(1)
ij − 3c ~Fij .

B Technical Details to the Implementation
My implementation of the NBODY0 source code provided by Binney & Tremaine in
their Galactic Dynamics book, was written in Objective C / ANSI-C. The choice for
this language has no particular reason, except that it is the standard language for the
Apple OS X operating system. Using Objective C enabled the usage of object oriented
programming, so that many parts of my code can be reused for other problems as well.

Since many mathematical operations used in the scheme are done using vectors, the
usage of the PowerPCs AltiVec engine was quite obvious. AltiVec is a vector processing
unit on the PowerPC G4 and G5 chip, enabling parallel processing of four numbers. This
reduced many operations that required three operations in normal processing mode, into
only one when using the AltiVec engine. A direct result of this is a speed increase of
about a factor three. One drawback of AltiVec lies in number precision, since the
best floating point type is only the ANSI-C type float (double float is not supported).
Another drawback is the quite cryptic syntax, not enabling an intuitive way of writing
equations. A quick introduction to AltiVec will be given below.

For visualization of the simulation, the visualization package VTK has been used.
VTK is an open source package, mainly used in medical applications. It has a very steep
learning curve and documentation is scarce. But the package offers many possibilities
and is very powerful. For introductions on how to implement VTK with Apples OS X
and especially the COCOA architecture, consult this very good tutorial: VTK Tutorial
http://www.macdevcenter.com/pub/a/mac/2003/02/11/dev_osx.html

All the technical aspects in this Appendix are focused on the Apple OS X operating
system. Although only the AltiVec part is mainly limited to the PowerPC architecture,
all the other parts can be interesting for development on any platform.

C AltiVec
This section is meant to give a quick overview on how to use AltiVec with Objective C
and Apples Xcode coding program. This is by far not a complete guide to programming
with AltiVec and it will only cover aspects as far as they had been used in the simula-
tion source code. For further and deeper information, the Apple developer homepage
Delevoper Apple http://developer.apple.com is an essential place to look for.

To be able to use the AltiVec engine, the compiler needs to be informed, to use its
extended functions for AltiVec. In Xcode this compiler flag can be easily turned on, by
editing the Target properties. Using “Get Info” to edit the default Target in the project
browser, AltiVec can be turned on under “Build”, by activating the check box in front
of “Enable AltiVec Extension”. This will inform the gcc compiler to use the AltiVec
extensions.

Declaration
Declaration of a variable with the type vector, is done as any other variable is defined
and initialised in C. Vectors can be of different types, like character, integer or float. A

21

complete list of all types can be found on Apples developer page. The following example
will clarify how to initialise a vector:

vector float someVector;

vector int someIntVector;

someVector = (vector float) (1.23, 0.0, -1.85, 54.34);

someIntVector = (vector int) (1, 4, 34, -4);

Basic Math
Doing math with vectors is not straight forward with AltiVec and shows similarities to
the Assembler programming language. This makes AltiVec code very hard to read. In
the source code, I tried to comment the underlying calculation, so it should be possible
to see how things work. A short introduction to the most basic operations shall be
given. With these, more complicated structures can be build.

Unlike doing normal math in C, AltiVec uses functions to do the basic operations.
This means for example, that adding just two vectors is not done in the intuitive way
of c = a + b. Instead one has to use c = vec_add(a, b). The following table describes
the frequently used operations.

Function Syntax Description
vec_add vec_add(arg1, arg2) Adds two vectors together.

~arg1 + ~arg2
vec_sub vec_sub(arg1, arg2) Subtracts two vectors.

~arg1− ~arg2
vec_madd vec_madd(arg1, arg2,

arg3)
Multiplies each component of arg1
and arg2, and adds this to arg3.
arg1i · arg2i + arg3i

vec_nmsub vec_nmsub(arg1,
arg2, arg3)

Subtracts the component wise
product of arg1 and arg2, from
arg3
− (arg1i · arg2i − arg3i) =
arg3i − arg1i · arg2i

Extended functions - vecMath.h
Some additional vector functions are included in vecMath.h. There are two types of
functions in this library. Some are implementations of some extended vector operations
using AltiVec, other can be used to store and retrieve information in vectors.

The extended vector operations implemented in vecMath.h are the scalar product,
absolute value of a vector, and the square absolute value.

Function Syntax Description
vecSdot vecSdot(arg1, arg2) Returns the scalar multiplication

of arg1 and arg2 as type float
vecAbs vecAbs(arg1) Returns the absolute value of arg1

as type float
vecAbsQuad vecAbsQuad(arg1) Returns the squared value of ve-

cAbs as type float
The following functions in vecMath.h can be used to manipulate data stored in

vectors directly. They also make it possible, to extract only certain components of the
vector, all functions that are not available by default.

22

Function Description
createUniformVector(float x) Returns an vector that has the

same value x in every component.
Used to multiply a vector with a
“scalar”

convertVectorToArray(arg1,
float(*array))

Writes the components of an vec-
tor into an existing array of the
type float.

createVector(x, y, z) Used to dynamically create vec-
tors.

D VTK
VTK is an open source visualization library, used to visualize many problems in different
kinds of scientific disciplines. It can be downloaded on the Kitware homepage VTK
http://public.kitware.com/VTK/ or on OS X using fink.

VTK is written in C++, so applications using VTK need to be developed in C++
too. This is no particular drawback, since the Apple gcc compiler allows to mix the
Objective C and C++ languages. To get started with VTK is quite painfull, since
the documentation is quite sparce for beginers. An easy way to start is, to look at
the tutorial for VTK on Mac VTK Tutorial http://www.macdevcenter.com/pub/a/
mac/2003/02/11/dev_osx.html. Then there are many good example programs that
try to show how specific aspects of VTK are used. These can be found on the VTK
documentation pages VTK Doc http://public.kitware.com/VTK/doc/nightly/
html/pages.html. A good thing is also to look at my visualisation program used for
generating movies of my N-Body simulations, that is a crude adaption of the Tutorial
mentioned above.

E Class Structure and Description of the Source
Code

In this section, the source code with all its classes will be discussed. The source code can
be downloaded on my homepage Icysun http://cs.icysun.net. It is being distributed
under the GPL license.

Five classes make up the whole simulation program, of which one is responsible for
the setup of the particle system to be simulated.

The classes body and particleSystem make up the system to be simulated. The
class body defines the a particle of a system, with all its properties and methods. The
class particleSystem gathers many bodies into one system. particleSystem defines
all the properties and methods of a particle system.

The class setupSystem will produce a particle system, that is either homogenically
distributed or a part of the galactic disc with all the properties described above.

The integration class handles all the math and is the main part of the simulation
code. A particleSystem will be passed to this class and is then simulated.

The main class nBodyBac2 is handling the program flow and is responsible for the
main menu.

body

The body class defines one particle of the particle system. It defines methods of reading
and writing all the particle properties.

23

Property Type Writing Method Reading Method
idNum int setIdNum getIdNum
mass float setMass getMass
r_0 vector float setR_0 getR_0
r_t vector float setR_t getR_t
v_0 vector float setV_0 getV_0
v_t vector float setV_t getV_t
F vector float setF getF
F1 vector float setF1 getF1
F2 vector float setF2 getF2
F3 vector float setF3 getF3
D1 vector float setD1 getD1
D2 vector float setD2 getD2
D3 vector float setD3 getD3
delta_t double setDelta_t getDelta_t
t_0 double setT_0 getT_0
t_1 double setT_1 getT_1
t_2 double setT_2 getT_2
t_3 double setT_3 getT_3
hasPotentialON int setReactOnPotentialON reactsOnPotential

setReactOnPotentialOFF
Initialisation is being done with [body initWithId:(int) newID withMass:(float)

newMass withR_0: (vector float) newR_0 withV_0: (vector float) newV_0]

particleSystem

The particleSystem class manages the particle system that needs to be simulated. It
gathers many bodies into one system an handles general management methods for the
particles. particleSystem has the following properties:

Property Type Writing Method Reading Method
* particle NSMutableArray see below getParticle
numParticle int count
boxDimX float setBoxDim getBoxDimX
boxDimY float setBoxDim getBoxDimY
boxDimZ float setBoxDim

The NSMutableArray * particle holds all the bodies in the particle system and
is of the type NSMutableArray, as used in the COCOA environment. To add a particle,
the following three methods can be used:

• [particleSystem addParticle: (body *) body] - this will add an already
initialised object of the type body to the array of particles.

• [particleSystem addParticleWithMass: (double) newMass withR_0: (vector
float) newR_0 withV_0: (vector float) newV_0] - this will add a new
body with the properties mass, R_0 and V_0 to the array of particles. This body
will interact with an external potential.

• [particleSystem addParticleWithMassPotentialOFF: (double) newMass
withR_0: (vector float) newR_0 withV_0: (vector float) newV_0] -
the same as addParticleWithMass, except that this body will be excluded from
interaction with an external potential.

Two other methods are included in particleSystem for body management. One is to
replace an existing body with a new one and the other method will delete an existing
body.

24

• [particleSystem replaceParticleWith: (body *) tmpBody atIndex: (int)
idNum]

• [particleSystem deleteParticleAt: (int) idNum]

integration

The integration class implements the integration scheme as described above. It also
controls its own program flow and once started it cannot be modified from outside of
the class.

But before the integration itself is invoked, the class needs to be setup correctly, no
check is being carried out, if it has been setup correctly! All the parameters need to
be passed on. This is done by the setupSystem class that will guide the user through
the setup process. To see what need to be configured, it is good to look through the
setupSystem class.

integration has the following properties:
Property Type Writing Method Reading Method
epsilon float setEpsilon getEpsilon
currentTime double setCurrentTime getCurrentTime
startingTime float setStartingTime getStartingTime
criticalTime float setCriticalTime
eta double setAccuracy getAccuracy
withExternalPotential int turnExternalPotentialON

turnExternalPotentialOFF
potentialDistance float setPotentialDistance
externalPotentialMass float setPotentialMass
mirrorOnZ int turnMirroringZON

turnMirroringZOFF
keepBoxSizeFix int turnReturnToBoxON

turnReturnToBoxOFF
deltaT float setOutputInterval

To initialise the integration class, the following order of method-calls needs to be
done:

[integration initialisePartOne];
[integration initialisePartTwo];
[integration initialiseTimeSteps];
[integration integrate];

F Appendix: Some small notes

F.1 External Potential
When using a spherical potential as an external potential, it is best to use a plummer
sphere with a=0. This results in a normal sphere. The advantage of this is, that
the plummer potential has a Taylor series expansion that is similar to the one of the
gravitational force. The terms that need to be added to the force polynom are:

~FP =
M ~ri(

r2
ij + a2

)3/2

~
F

(1)
P =

M ~vi(
r2
ij + a2

)3/2
− 3

~ri · ~vi(
r2
ij + a2

)3/2
· ~FP

Be sure to double check the position in the source code of where the external
potential is added to the force. Be careful not to place it in the loop, where the

25

influence of all particles on the one particle is evaluated. It should be added before or
after this loop, not inside!

F.2 Calculation of Energy
If the kinetic energy shows in its plot signatures that should not be there, check for par-
ticles that escaped into the maxwell tail. A good way to calculate the kinetic energy is,
to filter the data for these kind of particles (maybe using some kind of sigma clipping?).
This filtering mechanism has not been implemented in the analysis routines.

F.3 Simulating Very Heavy Particles
Is the disturbance particle very heavy (definitely greater than 20000), then this particle
should be given a different value of ε. This needs to be a special feature of the particle
and has to be implemented into the particle class. Integration code has thus to be
adopted. This will prevent the heavy particle from swallowing up all the other particles
and colliding with them. The heavy particle should have a softer collision than all the
others.

F.4 Apples Transition to Intel Processors
The complete code needs to be rewritten, so that it could be reused on the next to come
Intel architecture. For this it would be best, to adapt the whole code for use of the
vecLib.framework (i.e. vDSP). This would enable easy cross platform usage of the code.
Again, the AltiVec advantage can only be leveraged, with the usage of single precision
floats, even though, vecLib.framework allows the processing of double precision floats
(they are processed using scalar code).

References
Aarseth, S. J. 2001, New Astronomy, 6, 227

—. 2003, Gravitational N-Body Simulations (Cambridge University Press)

Binney, J. & Tremaine, S. 3. edition, 1994, Galactic Dynamics (Princeton Series in
Astrophysics)

Buser, R. 2000, Science, 287

Font, A. S., Navarro, J. F., Stadel, J., & Quinn, T. 2001, Astrophysical Journal,
563, L1

Freeman, K. & Blend-Hawthorn, J. 2002, Annu. Rev. Astron. Astrophys.

Gilmore, G. 2003, RevMexAA, 17, 149

Gilmore, G. & Reid, N. 1983, Mon. Not. R. astr. Soc.

Gilmore, G., Wyse, R., & Kuijken, K. 1989, Annu. Rev. Astron. Astrophys.

Makino, J. 1991, Astrophysical Journal, 369, 200

Nordström, B., Mayor, M., Andersen, J., Holmberg, J., Pont, F., Jorgensen, B. R.,
Olsen, E. H., Udry, S., & Mowlavi, N. 2004, A&A

Wielen, R. 1977, Astron. Astrophys.

Wielen, R., Dettbarn, C., Fuchs, B., Jahreiss, H., & Radons, G. 1992, The Stellar
Populations of Galaxies, 81

26

